Smoothed Wigner functions: a tool to resolve semiclassical structures

  • A. M.F. RivasEmail author
  • E. G. Vergini
  • D. A. Wisniacki
Nonlinear Dynamics


The Wigner and Husimi distributions are the usual phase space representations of a quantum state. The Wigner distribution has structures of order ħ2. On the other hand, the Husimi distribution is a Gaussian smearing of the Wigner function on an area of size ħ and then, it only displays structures of size ħ. We have developed a phase space representation which results a Gaussian smearing of the Wigner function on an area of size ħσ, with σ≥1. Within this representation, the Husimi and Wigner functions are recovered when σ=1 and \( \sigma \gtrsim 2 \) respectively. We treat the application of this intermediate representation to explore the semiclassical limit of quantum mechanics. In particular we show how this representation uncover semiclassical hyperbolic structures of chaotic eigenstates.


Spectroscopy Neural Network State Physics Complex System Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, NY, 1990) Google Scholar
  2. N.L. Balazs, B.K. Jennings, Phys. Rep. 104, 348 (1984)Google Scholar
  3. M.V. Berry, M. Tabor, J. Phys. A: Math. Gen. 10, 371 (1977)Google Scholar
  4. J.M. Tualle, A. Voros, Chaos Solitons, Fractals 5, 1085 (1995) Google Scholar
  5. W.H. Zurek, Nature 412, 712 (2001)Google Scholar
  6. Z.P. Karkuszewski, C. Jarzynski, W.H. Zurek, Phys. Rev. Lett. 89, 170405 (2002)Google Scholar
  7. D.A. Wisniacki, Phys. Rev. E 67, 016205 (2003)Google Scholar
  8. A.M.F. Rivas, A.M. Ozorio de Almeida, Nonlinearity 15, 681 (2002)Google Scholar
  9. K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1856 (1969); Phys. Rev. 177, 1969 (1969)Google Scholar
  10. J. Fiuráŝek, Phys. Rev. A 62, 013822 (2000)Google Scholar
  11. E.J. Heller, Phys. Rev. Lett. 53, 1515 (1984) Google Scholar
  12. L. Kaplan, Nonlinearity 12, R1 (1999) Google Scholar
  13. A.M.F. Rivas, in preparation Google Scholar
  14. For example in the case of a particle of mass m moving with kinetic energy E in a stadium billiard, the perimeter of the boundary is the characteristic length when we use Birkhoff coordinates birk, while the characteristic momentum is given by \( \sqrt{2mE} \) Google Scholar
  15. A.M. Ozorio de Almeida, Phys. Rep. 295, 265 (1998)Google Scholar
  16. A. Perelomov, Generalized Coherent States and their Applications (Springer, New York, 1986) Google Scholar
  17. F.A. Berezin, Sov. Phys. Usp. 132, 497 (1980)Google Scholar
  18. V. Bargmann, Analytic methods in Mathematical Physics (Gordon and Breach, New York, 1970), Vol. 74 Google Scholar
  19. L.A. Bunimovich, Funct. Anal. Appl. 8, 254 (1974)Google Scholar
  20. A.G. Huibers et al., Phys. Rev. Lett. 83, 5090 (1999)Google Scholar
  21. M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 283, 1905 (1999)CrossRefGoogle Scholar
  22. Once the flow is studied through the collision map on the boundary. The place where the collision occurs and the incident angle are canonically conjugate coordinates called the Birkhoff coordinates Google Scholar
  23. E.G. Vergini, J. Phys. A: Math. Gen. 33, 4709 (2000)Google Scholar
  24. E.G. Vergini, J. Phys. A: Math. Gen. 37, 6507 (2004)Google Scholar
  25. O. Brodier, A.M. Ozorio de Almeida, Phys. Rev. E 69, 016204 (2004)Google Scholar
  26. I. García-Mata, M. Saraceno, M.E. Spina, Phys. Rev. Lett. 91, 064101 (2003)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2004

Authors and Affiliations

  • A. M.F. Rivas
    • 1
    • 2
    Email author
  • E. G. Vergini
    • 1
  • D. A. Wisniacki
    • 3
  1. 1.Departamento de FísicaBuenos AiresArgentina
  2. 2.Instituto de Ciencias, Universidad Nacional de General SarmientoLos Polvorines Prov. Buenos AiresArgentina
  3. 3.Departamento de Física “J.J. Giambiagi”, FCEN, UBA, Pabellón 1Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations