Quantum tachyons

  • R. TomaschitzEmail author
Entanglement and Non-Locality


The interaction of superluminal radiation with matter in atomic bound-bound and bound-free transitions is investigated. We study transitions in the relativistic hydrogen atom effected by superluminal quanta. The superluminal radiation field is coupled by minimal substitution to the Dirac equation in a Coulomb potential. We quantize the interaction to obtain the transition matrix for induced and spontaneous superluminal radiation in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, the cross-sections for ground state ionization by transversal and longitudinal tachyons are derived. We examine the relativistic regime, high electronic ejection energies, as well as the first order correction to the non-relativistic cross-sections. In the ultra-relativistic limit, both the longitudinal and transversal cross-sections are peaked at small but noticeably different scattering angles. In the non-relativistic limit, the longitudinal cross-section has two maxima, and its minimum is located at the transversal maximum. Ionization cross-sections can thus be used to discriminate longitudinal radiation from transversal tachyons and photons.


Dirac Equation Photoelectric Effect Relativistic Regime Transversal Maximum Ground State Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Tanaka, Prog. Theor. Phys. 24, 171 (1960)ADSGoogle Scholar
  2. Ya.P. Terletsky, Sov. Phys. Dokl. 5, 782 (1961)ADSGoogle Scholar
  3. O.M.P. Bilaniuk, V.P. Deshpande, E.C. Sudarshan, Am. J. Phys. 30, 718 (1962)MathSciNetADSGoogle Scholar
  4. G. Feinberg, Phys. Rev. 159, 1089 (1967)CrossRefADSGoogle Scholar
  5. M.B. Davis, M.N. Kreisler, T. Alväger, Phys. Rev. 183, 1132 (1969)CrossRefADSGoogle Scholar
  6. G. Feinberg, Sci. Am. 222, 69 (1970)CrossRefGoogle Scholar
  7. R. Newton, Science 167, 1569 (1970)ADSGoogle Scholar
  8. F.A.E. Pirani, Phys. Rev. D 1, 3224 (1970) ADSGoogle Scholar
  9. E. Recami, R. Mignani, Riv. Nuovo Cim. 4, 209 (1974)ADSGoogle Scholar
  10. E. Recami, Riv. Nuovo Cim. 9, 1 (1986)MathSciNetADSGoogle Scholar
  11. E. Recami, F. Fontana, R. Garavaglia, Int. J. Mod. Phys. A 15, 2793 (2000) CrossRefzbMATHMathSciNetADSGoogle Scholar
  12. M.E. Arons, E.C. Sudarshan, Phys. Rev. 173, 1622 (1968)CrossRefADSGoogle Scholar
  13. J. Dhar, E.C. Sudarshan, Phys. Rev. 174, 1808 (1968)CrossRefADSGoogle Scholar
  14. D.G. Boulware, Phys. Rev. D 1, 2426 (1970)CrossRefADSGoogle Scholar
  15. K. Kamoi, S. Kamefuchi, Prog. Theor. Phys. 45, 1646 (1971)ADSGoogle Scholar
  16. G. Feinberg, Phys. Rev. D 17, 1651 (1978); G. Feinberg, Phys. Rev. D 19, 3812 (1979)CrossRefADSGoogle Scholar
  17. A. Proca, Compt. Rend. 202, 1366 (1936); A. Proca, Compt. Rend. 202, 1490 (1936); A. Proca, Compt. Rend. 203, 709 (1936)ADSGoogle Scholar
  18. A. Proca, J. Phys. 7, 347 (1936); J. Phys. 8, 23 (1936)zbMATHGoogle Scholar
  19. A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 43, 277 (1971)CrossRefADSGoogle Scholar
  20. R. Tomaschitz, Eur. Phys. J. B 17, 523 (2000)CrossRefMathSciNetADSGoogle Scholar
  21. R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and All That (Benjamin, New York, 1964) Google Scholar
  22. N.N. Bogolubov, A.A. Logunov, I.T. Todorov, Introduction to Axiomatic Quantum Field Theory (Benjamin, London, 1975) Google Scholar
  23. R. Tomaschitz, Chaos Sol. Fractals 7, 753 (1996)CrossRefADSGoogle Scholar
  24. R. Tomaschitz, Class. Quant. Grav. 18, 4395 (2001)CrossRefzbMATHMathSciNetADSGoogle Scholar
  25. M. Born, Proc. Roy. Soc. Lond. A 143, 410 (1934)zbMATHADSGoogle Scholar
  26. R. Tomaschitz, Chaos Sol. Fractals 9, 1199 (1998)CrossRefzbMATHMathSciNetADSGoogle Scholar
  27. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982) Google Scholar
  28. R. Tomaschitz, Physica A 320, 329 (2003)MathSciNetADSGoogle Scholar
  29. R. Tomaschitz, Physica A 307, 375 (2002)zbMATHADSGoogle Scholar
  30. R. Tomaschitz, Physica A 293, 247 (2001)zbMATHADSGoogle Scholar
  31. H.A. Bethe, E.A. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Plenum, New York, 1977) Google Scholar
  32. T.F. Gallagher, Rydberg Atoms (Cambridge Univ. Press, Cambridge, 1994) Google Scholar
  33. V.S. Lebedev, I.L. Beigman, Physics of Highly Excited Atoms and Ions (Springer, New York, 1998) Google Scholar
  34. R. Tomaschitz, Chaos Solitons Fractals 20, 713 (2004)CrossRefzbMATHGoogle Scholar
  35. J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945)CrossRefADSGoogle Scholar
  36. R. Tomaschitz, Physica A 335, 577 (2004)ADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of PhysicsHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations