Advertisement

Numerical study of plasma-wall transition using an Eulerian Vlasov code

  • M. Shoucri
  • A. CardinaliEmail author
  • J. P. Matte
  • R. Spigler
Article

Abstract.

A one-dimensional Eulerian Vlasov code is used to study the self-consistent solution of a plasma facing a floating collector, in the absence of an external magnetic field. Both electrons and ions are treated with a kinetic equation. A Bhatnagar-Gross-Krook (BGK) collision term is used to describe the collisions. Acceleration of the ion flow at the Debye sheath entrance is observed together with the formation of a stable steep negative electric field in front of the floating collector. This negative electric field acts to accelerate the positive ions towards the plate, pushing back the negative electrons, such that at steady state the total current collected at the plate is zero. The codes are run for a sufficiently long time on the ions time scale to ensure the ions (argon) distribution function is reaching a steady state. For the different parameters used, the solution shows the existence of persistent regular oscillations of constant amplitude when the electron collisions are very small or negligible. These oscillations will be studied. The increase in the electron collisions damps these oscillations and helps the system reach an equilibrium.

Keywords

Steady State Argon Kinetic Equation External Magnetic Field Total Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Stangeby, The Plasma Boundary of Magnetic Fusion (Institute of Physics Publishing, Abingdon (UK), devices, 2000)Google Scholar
  2. 2.
    F. Valsaque, G. Manfredi, J. Nucl. Mater. 290, 763 (2001)CrossRefGoogle Scholar
  3. 3.
    H. Gerhauser, H.A. Claassen, Contr. Plasma Phys. 38, 331 (1998)Google Scholar
  4. 4.
    R. Chodura, Phys. Fluids 25, 1628 (1982)CrossRefzbMATHGoogle Scholar
  5. 5.
    D. Tskhakaya, S. Kuhn, Proc. EPS Conf., Madeira, Portugal, 2001Google Scholar
  6. 6.
    M. Shoucri, K.H. Finken, Proc. EPS Conf., Madeira, Portugal, 2001; N. Schupfer, S. Kuhn, M. Shoucri, Proc. EPS Conf., Madeira, Portugal, 2001Google Scholar
  7. 7.
    M. Shoucri, H. Gerhauser, K.H. Finken, Czech. J. Phys. 52, 1121 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Shoucri, J.P. Matte, A. Cote, J. Phys. D 36, 2083 (2003)CrossRefGoogle Scholar
  9. 9.
    C.Z. Cheng, G. Knorr, J. Comp. Phys. 22, 330 (1976)Google Scholar
  10. 10.
    M. Shoucri, R. Gagne, J. Comp. Phys. 24, 445 (1997); J. Comp. Phys. 27, 315 (1978)zbMATHGoogle Scholar
  11. 11.
    T.H. Chung, L. Meng, H.J. Yoon, J.K. Lee, Jap. J. Appl. Phys. 36, 2874 (1997)CrossRefGoogle Scholar
  12. 12.
    R.N. Franklin, J. Snell, J. Phys. D: Appl. Phys. 31, 2532 (1998)CrossRefGoogle Scholar
  13. 13.
    I.G. Kouznetsov, A.J. Lichtenberg, M.A. Lieberman, J. Appl. Phys. 86, 4142 (1999)CrossRefGoogle Scholar
  14. 14.
    R. Hrach, Czech. J. Phys. 49, 155 (1999)CrossRefGoogle Scholar
  15. 15.
    J.T. Gudmundsson, Plasma Sources Sci. Technol. 10, 76 (2001)CrossRefGoogle Scholar
  16. 16.
    O.V. Batischchev, M. Shoucri, A. Batischcheva, I.P. Shkarofsky, J. Plasma Phys. 61, 347 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • M. Shoucri
    • 1
  • A. Cardinali
    • 2
    Email author
  • J. P. Matte
    • 3
  • R. Spigler
    • 4
  1. 1.Institut de recherche d’Hydro-QuébecVarennes (Québec)Canada
  2. 2.Associazione Euratom-ENEA sulla FusioneCentro Ricerche FrascatiFrascati, RomeItaly
  3. 3.INRS Énergie et MatériauxUniversité du QuébecVarennes (Québec)Canada
  4. 4.Dipartimento di MatematicaUniversitá di Roma IIIRomaItaly

Personalised recommendations