Quantum fluctuations in holographic teleportation of optical images

  • A. GattiEmail author
  • I. V. Sokolov
  • M. I. Kolobov
  • L. A. Lugiato


We investigate in detail the quantum fluctuations in the quantum holographic teleportation protocol that we recently proposed [11]. This protocol implements a continuous variable teleportation scheme that enables the transfer of the quantum state of spatially multimode electromagnetic fields, preserving their quantum correlations in space-time, and can be used to perform teleportation of 2D optical images. We derive a characteristic functional, which provides any arbitrary spatio-temporal correlation function of the teleported field, and calculate the fidelity of the teleportation scheme for multimode Gaussian input states. We show that for multimode light fields one has to distinguish between a global and a reduced fidelity. While the global fidelity tends to vanish for teleportation of fields with many degrees of freedom, the reduced fidelity can be made close to unity by choosing properly the number of essential degrees of freedom and the spatial bandwidth of the EPR beams used in the teleportation scheme.


Correlation Function Electromagnetic Field Quantum State Optical Image Quantum Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wooters, Phys. Rev. Lett. 70, 1895 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    L. Vaidman, Phys. Rev. A 49, 1473 (1994)CrossRefGoogle Scholar
  3. 3.
    S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)CrossRefGoogle Scholar
  4. 4.
    D. Bouwmeester et al. , Nature 390, 575 (1997); D. Boschi et al. , Phys. Rev. Lett. 80, 1121 (1998)CrossRefGoogle Scholar
  5. 5.
    A. Furusawa, J.L. Sorensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Science 282, 706 (1998)CrossRefGoogle Scholar
  6. 6.
    W.P. Bowen, N. Treps, B.C. Buchler, R. Schnabel, T.C. Ralph, H.-A. Bachor, T. Symul, P.K. Lam, Phys. Rev. A 67, 032302 (2003)CrossRefGoogle Scholar
  7. 7.
    S.L. Braunstein, Phys. Rev. Lett. 80, 4084 (1998); S.L. Braunstein, Nature 394, 47 (1998); S. Lloyd, J.-J.E. Slotine, Phys. Rev. Lett. 80, 4088 (1998)CrossRefGoogle Scholar
  8. 8.
    S.L. Braunstein, H.J. Kimble, Phys. Rev. A 61, 042302 (2000)CrossRefGoogle Scholar
  9. 9.
    T.S. Ralph, Phys. Rev. A 61, 010303(R) (1999)CrossRefGoogle Scholar
  10. 10.
    P. Van Loock, S.L. Braunstein, H.J. Kimble, e-print arXiv:quant-ph/9902030Google Scholar
  11. 11.
    I.V. Sokolov, M.I. Kolobov, A. Gatti, L.A. Lugiato, Opt. Commun. 193, 175 (2001)CrossRefGoogle Scholar
  12. 12.
    M.I. Kolobov, I.V. Sokolov, JETP 69, 1097 (1989); M.I. Kolobov, I.V. Sokolov, Phys. Lett. A 140, 101 (1989)Google Scholar
  13. 13.
    M.I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999)CrossRefGoogle Scholar
  14. 14.
    E. Brambilla, A. Gatti, P. Navez, L.A. Lugiato, Phys. Rev. A 65, 013813 (2002); e-print arXiv:quant-ph/0010108CrossRefGoogle Scholar
  15. 15.
    M.I. Kolobov, Phys. Rev. A 44, 1986 (1991)CrossRefGoogle Scholar
  16. 16.
    E. Brambilla, A. Gatti, L.A. Lugiato, Phys. Rev. A 69, 023802 (2004)CrossRefGoogle Scholar
  17. 17.
    See e.g. Chonghoon Kim, Prem Kumar, Phys. Rev. Lett. 73, 1605 (1994) for a review of the problemCrossRefGoogle Scholar
  18. 18.
    L.A. Lugiato, Ph. Grangier, J. Opt. Soc. Am. B 14, 225 (1997)Google Scholar
  19. 19.
    K.I. Petsas, A. Gatti, L.A. Lugiato, C. Fabre, Eur. Phys. J. D 22, 501 (2003)Google Scholar
  20. 20.
    A. Gatti, S. Gigan, A. Maitre, C. Fabre, Effect of finite length of nonlinear medium on the multimode squeezing properties of a confocal OPO, in preparationGoogle Scholar
  21. 21.
    I.V. Sokolov, M.I. Kolobov, L.A. Lugiato, Phys. Rev. A 60, 2420 (1999)CrossRefGoogle Scholar
  22. 22.
    A.V. Belinskii, N.N. Rosanov, Opt. Spektrosk. 73, 153 (1992) [Opt. Spectrosc. 73, 89 (1992)]Google Scholar
  23. 23.
    B. Yurke, Phys. Rev. A 32, 311 (1985)CrossRefGoogle Scholar
  24. 24.
    S.Z. Ou, H.J. Kimble, Phys. Rev. A 52, 3126 (1995)CrossRefGoogle Scholar
  25. 25.
    M.I. Kolobov, I.V. Sokolov, Europhys. Lett. 15, 271 (1991)Google Scholar
  26. 26.
    A. Gatti, L.A. Lugiato, Phys. Rev. A 52, 1675 (1995)CrossRefGoogle Scholar
  27. 27.
    T.C. Ralph, P.K. Lam, Phys. Rev. Lett. 81, 5668 (1998)CrossRefGoogle Scholar
  28. 28.
    R.J. Glauber, Phys. Rev. 130, 2529 (1963); R.J. Glauber, in Quantum Optics and Electronics, Les Houches Summer School of Theoretical Physics, University of Grenoble, edited by C. DeWitt, A. Blandin, C. Cohen-Tannoudji (Gordon and Breach, New York, 1965), p. 53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • A. Gatti
    • 1
    Email author
  • I. V. Sokolov
    • 2
  • M. I. Kolobov
    • 3
  • L. A. Lugiato
    • 1
  1. 1.INFM, Dipartimento di Scienze CC FF MMUniversitá dell’InsubriaComoItaly
  2. 2.Physics InstituteSt.-Petersburg UniversityPetrodvorets, St.-PetersburgRussia
  3. 3.Laboratoire PhLAMUniversité de Lille-1Villeneuve d’Ascq CedexFrance

Personalised recommendations