Advertisement

Lagrangian description of nonlinear dust-ion acoustic waves in dusty plasmas

  • I. KourakisEmail author
  • P. K. Shukla
Article

Abstract.

An analytical model is presented for the description of nonlinear dust-ion-acoustic waves propagating in an unmagnetized, collisionless, three component plasma composed of electrons, ions and inertial dust grains. The formulation relies on a Lagrangian approach of the plasma fluid model. The modulational stability of the wave amplitude is investigated. Different types of localized envelope electrostatic excitations are shown to exist.

Keywords

Dust Acoustic Wave Wave Amplitude Dusty Plasma Fluid Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics Publishing Ltd., Bristol, 2002)Google Scholar
  2. 2.
    F. Verheest, Waves in Dusty Space Plasmas (Kluwer Academic Publishers, Dordrecht, 2001)Google Scholar
  3. 3.
    N.A. Krall, A.W. Trivelpiece, Principles of plasma physics (McGraw-Hill, New York, 1973); Th. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992)Google Scholar
  4. 4.
    For a review, see: P.K. Shukla, A.A. Mamun, New J. Phys. 5, 17.1 (2003)CrossRefGoogle Scholar
  5. 5.
    I. Kourakis, P.K. Shukla, Phys. Plasmas 10(9), 3459 (2003); Eur. Phys. J. D 28, 109 (2003)CrossRefGoogle Scholar
  6. 6.
    R.C. Davidson, P.P.J.M. Schram, Nucl. Fusion 8, 183 (1968)Google Scholar
  7. 7.
    R.C. Davidson, Methods in nonlinear plasma theory (Academic Press, New York, 1972)Google Scholar
  8. 8.
    E. Infeld, G. Rowlands, Phys. Rev. Lett. 58, 2063 (1987)CrossRefGoogle Scholar
  9. 9.
    N. Chakrabarti, M.S. Janaki, Phys. Lett. A 305, 393 (2002)CrossRefGoogle Scholar
  10. 10.
    N. Chakrabarti, M.S. Janaki, Phys. Plasmas 10, 3043 (2003)CrossRefGoogle Scholar
  11. 11.
    R.Z. Sagdeev, in Reviews of Plasma Physics, edited by M.A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4, p. 52Google Scholar
  12. 12.
    Equation ([12]) was obtained from the (Lagrangian) density equation, which is reduced to: \(\partial(n \alpha)/\partial \tau = 0\) by using the property (11); equation (12) then followsGoogle Scholar
  13. 13.
    Equations (19) are derived from equations (12-14), \(E=-\nabla \phi\) and (11), respectively. We have avoided the appearance of \(\alpha^{-1}\) -- cf. equations (15,16) -- for analytical convenienceGoogle Scholar
  14. 14.
    T. Taniuti, N. Yajima, J. Math. Phys. 10, 1369 (1969); N. Asano, T. Taniuti, N. Yajima, J. Math. Phys. 10, 2020 (1969)CrossRefGoogle Scholar
  15. 15.
    A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer-Verlag, Berlin, 1975)Google Scholar
  16. 16.
    R. Fedele, H. Schamel, P.K. Shukla, Phys. Scripta T 98, 18 (2002); R. Fedele, H. Schamel, Eur. Phys. J. B 27, 313 (2002); R. Fedele, Phys. Scripta 65, 502 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für Theoretische Physik IVFakultät für Physik und Astronomie, Ruhr-Universität BochumBochumGermany

Personalised recommendations