Advertisement

Reinvestigation of the \(\mathsf{B^{2}\Sigma^{ + }\rightarrow X^{2}\Sigma^{ + }}\) system in the CO\(\mathsf{^ + }\) molecule

The \(\mathsf{B^{2}\Sigma^{ + }\rightarrow X^{2}\Sigma^{ + }}\) system in CO\(\mathsf{^ + }\)
  • W. SzajnaEmail author
  • R. Kepa
  • M. Zachwieja
Article

Abstract.

Conventional, high resolution molecular spectroscopy has been employed to record emission spectra of the first negative bands system in the 12C16O+ molecule. Twenty two bands form the 0-v”,1-v”, 2-v”, 3-v”, 4-v”, 5-v” progressions and 6-10 band were photographed in the 34000-46000 cm-1 spectral region. The reduction of the spectrum for the individual bands has been performed via a nonlinear least-squares fit with the effective Hamiltonians of Brown et al. [J. Mol. Spectrosc. 74, 294 (1979)]. The final molecular constants for both the \(B^{2}\Sigma^{ + }(v=0 - 6)\) and \(X^{2}\Sigma^{ + }(v=0 - 10)\) states were obtained from global merge calculations of the present data of the \(B\rightarrow X\) system and previously obtained in our laboratory data for \(A \rightarrow X\) and \(B \rightarrow A\) systems in the CO + molecule. Merged molecular parameters have been used in order to the determine the equilibrium constants for both considered states. The \(\gamma_{e} = 2.194(14) \times 10^{-2}\) cm-1 and \(\alpha_{\gamma e} = -1.021(64)\times 10^{-4}\) cm-1 constants for the \(B^{2}\Sigma^{ + }\) state were obtained for the first time. The RKR potentials have been calculated for both combining states, as well as Franck-Condon factor and r-centroids for the first negative system in the 12C16O + molecule. Furthermore, we report the value of the electronic isotopic shift \(\Delta\nu_{e} = -0.395\) cm -1 of the \(B\rightarrow X\) system in 13C16O + , calculated on the basis the presents results and those obtained by us previously for the 13C16O + molecule.

Keywords

Spectroscopy High Resolution Emission Spectrum Equilibrium Constant Laboratory Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Blacburn, Proc. Natl. Acad. Sci. 11, 28 (1925)Google Scholar
  2. 2.
    R.F. Schmid, Phys. Rev. 42, 182 (1932)CrossRefGoogle Scholar
  3. 3.
    D. Coster, H.H. Brons, H.Z. Bulthuis, Z. Phys. 79, 787 (1932)Google Scholar
  4. 4.
    R.F. Schmid, L. Gerö, Z. Phys. 86, 297 (1933)Google Scholar
  5. 5.
    L.H. Woods, Phys. Rev. 63, 431 (1943)CrossRefGoogle Scholar
  6. 6.
    K.N. Rao, Astrophys. J. 111, 50 (1950)CrossRefGoogle Scholar
  7. 7.
    P. Misra, D.W. Ferguson, K.N. Rao, E. Williams Jr, C. Mathews, J. Mol. Spectrosc. 125, 54 (1987)CrossRefGoogle Scholar
  8. 8.
    C. Haridass, C.V.V. Prassad, S.P. Reddy, Astrophys. J. 388, 669 (1992)CrossRefGoogle Scholar
  9. 9.
    T.A. Dixon, R.C. Woods, Phys. Rev. Lett. 34, 61 (1975)CrossRefGoogle Scholar
  10. 10.
    K.V.L.N. Sastry, P. Helminger, E. Herbst, F.C. De Lucia, Astrophys. J. 250, L91 (1981)Google Scholar
  11. 11.
    M. Bogey, C. Demuynck, J.L. Destombes, Mol. Phys. 79, 4704 (1983)CrossRefGoogle Scholar
  12. 12.
    Z. Jakubek, R. Kepa, A. Para, M. Rytel, Can. J. Phys. 65, 94 (1987)Google Scholar
  13. 13.
    Z. Bembenek, U. Domin, R. Kepa, K. Porada, M. Rytel, M. Zachwieja, Z. Jakubek, J.D. Janić, J. Mol. Spectrosc. 165, 205 (1994)CrossRefGoogle Scholar
  14. 14.
    P.B. Davies, W.J. Rothwell, J. Chem. Phys. 83, 5450 (1985)CrossRefGoogle Scholar
  15. 15.
    W. Szajna, R. Kepa, M. Zachwieja, J. Mol. Spectrosc. 223, 125 (2004)CrossRefGoogle Scholar
  16. 16.
    B.A. Palmer, R. Engleman Jr, Atlas of the Thorium Spectrum Los Alamos National Laboratory (Los Alamos NM, 1983)Google Scholar
  17. 17.
    J.M. Brown, J.T. Hougen, K.P. Huber, J.W.C. Johns, I. Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas, R.N. Zare, J. Mol. Spectrosc. 55, 500 (1975)Google Scholar
  18. 18.
    R. Kepa, Z. Malak, W. Szajna, M. Zachwieja, J. Mol. Spectrosc. 220, 58 (2003)CrossRefGoogle Scholar
  19. 19.
    J.M. Brown, E.A. Colbourn, J.K.G. Watson, F.D. Wayne, J. Mol. Spectrosc. 74, 294 (1979)Google Scholar
  20. 20.
    C. Amiot, J.P. Maillard, J. Chauville, J. Mol. Spectrosc. 87, 196 (1981)Google Scholar
  21. 21.
    J.L. Féménias, J. Mol. Spectrosc. 144, 212 (1990)Google Scholar
  22. 22.
    D.L. Albritton, A.L. Schmeltekopf, R.N. Zare, J. Mol. Spectrosc. 67, 132 (1977)Google Scholar
  23. 23.
    J.A. Coxon, J. Mol. Spectrosc. 72, 252 (1978)Google Scholar
  24. 24.
    R. Kepa, A. Kocan, M. Ostrowska-Kopeć, I. Piotrowska-Domagała, M. Zachwieja, in preparationGoogle Scholar
  25. 25.
    P.R. Bunker, J. Mol. Spectrosc. 28, 422 (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Atomic and Molecular Physics LaboratoryInstitute of Physics University of RzeszówRzeszówPoland

Personalised recommendations