Advertisement

Ionization of helium in positron collisions

  • I. F. BarnaEmail author
Article

Abstract.

A new Coulomb distorted-wave method with coupled-channel target functions is used to calculate total ionization cross-sections for helium in positron collisions. Besides Slater-like orbitals we use regular Coulomb wave packets in our configurational interaction basis to describe the target continuum. The incident positron energy was varied between the ionization threshold and 500 a.u. The results are in good agreement with experimental data and other theoretical calculations. Comparing to other sophisticated distorted wave methods our model is much easier to implement and gives accurate results. As a new feature we present ionization cross-sections where the He + ion remains in the 1s ground state or excited to the 2s or 2p state. As we know there are no experimental work done to determine such cross-sections. In the case of ionization followed by 2s or 2p excitation we compared our results with other calculations.

Keywords

Wave Packet Configurational Interaction Interaction Basis Wave Method Ionization Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Fromme, G. Kruse, W. Raith, G. Sinapius, Phys. Rev. Lett. 57, 3031 (1986)CrossRefGoogle Scholar
  2. 2.
    H. Knudsen, L. Brun-Nielsen, M. Charlton, M.R. Poulsen, J. Phys. B: At. Mol. Opt. Phys. 23, 3955 (1990)CrossRefGoogle Scholar
  3. 3.
    S. Mori, O. Sueoka, J. Phys B: At. Mol. Opt. Phys. 27, 4349 (1994)CrossRefGoogle Scholar
  4. 4.
    M.F. Jacobsen, N.P. Frandsen, H. Knudsen, U. Mikkelson, D.M. Schrader, J. Phys. B: At. Mol. Opt. Phys. 28, 4691 (1995)CrossRefGoogle Scholar
  5. 5.
    J. Moxom, P. Ashley, G. Lariccia, Can. J. Phys. 74, 367 (1996)Google Scholar
  6. 6.
    M. Basu, P.S. Mazumdar, A.S. Ghosh, J. Phys. B: At. Mol. Opt. Phys. 18, 369 (1985)CrossRefGoogle Scholar
  7. 7.
    P.R. Schultz, R.E. Olson, Phys. Rev A. 38, 1866 (1988)CrossRefGoogle Scholar
  8. 8.
    Z. Chen, A.Z. Msezane, Phys. Rev. A 49, 1752 (1993)CrossRefGoogle Scholar
  9. 9.
    C.P. Campbell, M.T. McAlinden, A.A. Keroghan, H.R.J. Walters, Nucl. Instrum. Meth. B 143, 41 (1998)CrossRefGoogle Scholar
  10. 10.
    L.D. Moores, Nucl. Instrum. Meth. B 179, 316 (2001)CrossRefGoogle Scholar
  11. 11.
    R.I. Campeanu, R.P. McEachron, A.D. Stauffer, Nucl. Instrum. Meth. B 192, 146 (2002)CrossRefGoogle Scholar
  12. 12.
    I.F. Barna, N. Grün, W. Scheid, Eur. Phys. J. D 25, 239 (2003)CrossRefGoogle Scholar
  13. 13.
    I.F. Barna, Doctoral thesis, University Giessen (2002); http://geb.uni-giessen.de/geb/volltexte/2003/1036Google Scholar
  14. 14.
    I.F. Barna, J.M. Rost, Eur. Phys. J. D 27, 287 (2003)CrossRefGoogle Scholar
  15. 15.
    N. Moiseyev, Phys. Rep. 302, 211 (1998)Google Scholar
  16. 16.
    N.F. Mott, H.S.W. Massey, The Theory of Atomic Collision, 3rd edn. (Clarendon, Oxford, 1965)Google Scholar
  17. 17.
    M. Abramowitz, A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., New York, 1972)Google Scholar
  18. 18.
    R.I. Campeanu, R.P. McEachran, A.D. Stauffer, Can. J. Phys. 77, 769 (1999)CrossRefGoogle Scholar
  19. 19.
    R.P. McEachran, D.L. Morgan, A.G. Ryman, A.D. Stauffer, J. Phys. B 10, 663 (1977)CrossRefGoogle Scholar
  20. 20.
    L.D. Moores, Nucl. Instrum. Meth. B 143, 105 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Max-Planck-Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations