Advertisement

Microfield fluctuations and radiative transitions in laser-generated strongly coupled plasmas

  • J. Marten
  • C. ToepfferEmail author
Article

Abstract.

Previously unaccessible plasma states of matter can be produced by irradiation with powerful lasers. The interactions within the plasma shift and distort the spectral lines corresponding to radiative transitions. The shape of the spectra is determined by two frequencies characterizing the fluctuations of the electric microfield in the plasma and the Stark splitting of the lines. Traditionally the fluctuations due to the motion of the ions are considered as sufficiently slow and weak to be treated in a linear quasi-static approximation, while the electrons are accounted for in an instantaneous impact approximation. Here also the intermediate regimes and strongly correlated ions are investigated. For that purpose the microfield fluctuations are calculated by molecular dynamics computer simulations. They are then used as input in a numerical solution of the time-dependent Schrödinger equation for the radiating electron. The shape of the Ly\(_{\alpha}\)-line in H and in Al is investigated in the intermediate regime. The calculations are in agreement with recent experiments on the Ly\(_{\alpha}\) and Ly\(_{\gamma}\) lines in Al.

Keywords

Molecular Dynamic Computer Simulation Molecular Dynamic Computer Simulation Dynamic Computer Simulation Powerful Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Mourou, C.P.J. Barty, M.D. Perry, Phys. Today 51, 22 (1998)Google Scholar
  2. 2.
    E.M. Campbell, W.J. Hogan, D.H. Crandall, C. R. Acad. Sci. Paris 1, Série IV, 671 (2000)Google Scholar
  3. 3.
    R. Ramis, S. Atzeni, M. Basko, J. Honrubia, L.F. Ibarez, K.J. Lutz, J. Maruhn, J. Meyer-ter-Vehn, J. Ramirez, J. Sanz, M. Temporal, Nucl. Instr. Meth. A 464, 45 (2001)CrossRefGoogle Scholar
  4. 4.
    P.M. Celliers, G.W. Collins, L.B. DaSilva, D.M. Gold, R. Cauble, R.J. Wallace, M.E. Foord, B.A. Hammel, Phys. Rev. Lett. 84, 5564 (2000)CrossRefGoogle Scholar
  5. 5.
    R. Redmer, Phys. Rep. 282, 35 (1997)CrossRefGoogle Scholar
  6. 6.
    D. Saumon, W.B. Hubbard, G. Chabrier, H.M. van Horn, Astrophys. J. 391, 827 (1992)CrossRefGoogle Scholar
  7. 7.
    D. Habs, G. Pretzler, A. Pukhov, J. Meyer-ter-Vehn, Progr. Part. Nucl. Phys. 46, 375 (2001)CrossRefGoogle Scholar
  8. 8.
    W. Theobald, R. Häßner, R. Kingham, R. Sauerbrey, R. Fehr, D.O. Gericke, M. Schlanges, W.-D. Kraeft, K. Ishihawa, Phys. Rev. E 59, 3544 (1999)CrossRefGoogle Scholar
  9. 9.
    T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, H. Schwoerer, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, K. Ortner, C.R. Becker, Phys. Rev. E 65, 016412 (2002)CrossRefGoogle Scholar
  10. 10.
    R. Griem, Spectral line broadening in plasmas (Academic Press, New York, 1974), Ch. IIGoogle Scholar
  11. 11.
    C.A. Iglesias, J.L. Lebowitz, D. MacGowan, Phys. Rev. A 28, 1667 (1983)CrossRefMathSciNetGoogle Scholar
  12. 12.
    J.W. Dufty, D.B. Boercker, C.A. Iglesias, Phys. Rev. A 31, 1681 (1985)CrossRefGoogle Scholar
  13. 13.
    D.B. Boercker, C.A. Iglesias, J.W. Dufty, Phys. Rev. A 36, 2254 (1987)CrossRefGoogle Scholar
  14. 14.
    G.C. Junkel, M.A. Gunderson, C.F. Hooper Jr, Phys. Rev. E 62, 5584 (2000)CrossRefGoogle Scholar
  15. 15.
    D.A. Haynes, D.T. Garber, C.F. Hooper Jr, R.C. Mancini, Y.T. Lee, D.K. Bradley, J.A. Delettrez, R. Epstein, P.A. Janimaagi, Phys. Rev. E 53, 1042 (1996)CrossRefGoogle Scholar
  16. 16.
    S.P. Regan, J.A. Delettrez, R. Epstein, P.A. Janimaagi, B. Yaakobi, V.A. Smolynk, F.J. Marshall, D.D. Mayerhofer, W. Scha, D.A. Haynes Jr, F.E. Golovkin, C.F. Hooper Jr, Phys. Plasmas 9, 1357 (2002)CrossRefGoogle Scholar
  17. 17.
    E. Förster, E.E. Fill, K. Gäbel, H. He, Th. Missalla, O. Renner, I. Uschmann, J. Wark, J. Quant. Spectrosc. Radiat. Transfer 51, 101 (1994)CrossRefGoogle Scholar
  18. 18.
    A. Saemann, K. Eidmann, I.E. Golovkin, R.C. Mancini, E. Andersson, E. Förster, K. Witte, Phys. Rev. Lett. 82, 4843 (1999)CrossRefGoogle Scholar
  19. 19.
    K. Eidmann, A. Saemann, U. Andiel, I.E. Golovkin, R.C. Mancini, E. Andersson, E. Förster, J. Quant. Spectrosc. Radiat Transfer 65, 173 (2000)CrossRefGoogle Scholar
  20. 20.
    U. Andiel, K. Eidmann, P. Hakel, R.C. Mancini, G.C. Junkel-Vives, J. Abdallah, K. Witte, Europhys. Lett. 60, 861 (2002)CrossRefGoogle Scholar
  21. 21.
    J. Marten, thesis, Erlangen (2003)Google Scholar
  22. 22.
    U. Müller-Nehler, G. Soff, Phys. Rep. 246, 101 (1994)CrossRefGoogle Scholar
  23. 23.
    F. Calvayrac, P.-G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)CrossRefGoogle Scholar
  24. 24.
    E.-M. Reinecke, thesis, Erlangen (2000)Google Scholar
  25. 25.
    H. Friedrich, Theoretical Atomic Physics (Springer, Berlin, 1990), Ch. 2.1Google Scholar
  26. 26.
    J. Holtsmark, Ann. Phys. 58, 577 (1919)Google Scholar
  27. 27.
    C.F. Hooper Jr, Phys. Rev. 165, 215 (1968)CrossRefGoogle Scholar
  28. 28.
    H. Mayer, Los Alamos Scientific Report LA-647 (1947)Google Scholar
  29. 29.
    G. Zwicknagel, C. Toepffer, P.-G. Reinhard, Phys. Rep. 309, 117 (1999)CrossRefGoogle Scholar
  30. 30.
    G. Zwicknagel, T. Pschiwul, private communicationGoogle Scholar
  31. 31.
    D. Salzmann, Atomic Physics in Hot Plasmas (Oxford University Press, New York, 1998), Chs. 7.4, 7.5Google Scholar
  32. 32.
    B. Talin, A. Calisti, J. Dufty, Phys. Rev. E 65, 056406 (2002)CrossRefGoogle Scholar
  33. 33.
    K.G. Dyall, I.P. Grant, C.T. Johnson, F.A. Parpia, E.P. Plummer, Comput. Phys. Commun. 55, 425 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für Theoretische Physik IIUniversität ErlangenErlangenGermany

Personalised recommendations