Advertisement

Charging of aerosol particles in the near free-molecule regime

  • A. A. LushnikovEmail author
  • M. Kulmala
Article

Abstract.

The charging of small neutral and charged particles suspended in weakly ionized plasma is investigated under the assumption that the Coulomb + image forces give rise to the ion transport in the carrier plasma and define the rate of charging processes. Our approach is based on a BGK version of the kinetic equation [1,2] describing the ion transport in the presence of force fields created by the particle charge and the image force. A special type of the perturbation theory (with respect to the reciprocal Knudsen number) is used for calculating the rate of ion deposition onto neutral and charged particles. As the starting approximation, the free-molecule ion distribution with a floating ion flux is used for evaluating the collision term in the Boltzmann equation. The value of the ion flux as a function of the particle size is then fixed self-consistently from the solution of the Boltzmann equation with the approximated collision term. The expression for the ion flux J(a) to the spherical particle of radius a is derived in the form \(J = \xi(a) J_{fm}\), where J fm is the free-molecule flux (no carrier plasma) and \(\xi(a)\) is a correction factor taking into account the ion-molecular collisions. The latter is shown to never exceed unity and to depend weakly on the particle-ion interaction.

Keywords

Particle Size Perturbation Theory Charged Particle Correction Factor Force Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)Google Scholar
  2. 2.
    M.M.R. Williams, S.K. Loyalka, Aerosol Science, Theory & Practice (Pergamon Press, Oxford, 1991)Google Scholar
  3. 3.
    P.C. Reist, Introduction to Aerosol Science (Macmillan, New York, 1984)Google Scholar
  4. 4.
    K.T. Whitby, B.U.H. Liu, Aerosol Science, edited by C.N. Davies (Academic Press, London, 1966)Google Scholar
  5. 5.
    B.M. Smirnov, Physics of Ionized Gases (Wiley, New York, 2000)Google Scholar
  6. 6.
    J.M. Hidy, J.R. Brock, The Dynamics of Aerocolloidal Systems (Pergamon Press, Oxford, 1970)Google Scholar
  7. 7.
    K.T. Whitby, Fine Particles, edited by B.Y.H. Liu (Elsevier, New York, 1976)Google Scholar
  8. 8.
    B.Y.H. Liu, Fine Particles, Aerosol Generation, Measurement, Sampling, and Analysis (Academic Press, New York, 1976)Google Scholar
  9. 9.
    B.M. Smirnov, Clusters and Small Particles in Gases and Plasma (Springer, New York, 2000)Google Scholar
  10. 10.
    B.M. Smirnov, Phys. Usp. 170, 495 (2000)Google Scholar
  11. 11.
    V.N. Tsytovich, Phys. Usp. 167, 57 (1997)Google Scholar
  12. 12.
    S.A. Khrapak, A.V. Ivlev, G. Morfill, Phys. Rev. E 64, 046403 (2001)CrossRefGoogle Scholar
  13. 13.
    Electrical Processes in Atmospheres, edited by H. Dolezalek, R. Reiter (D. Steinkopff, Darmstadt, 1977)Google Scholar
  14. 14.
    G.P. Reischl, J.M. Mäkelä, R. Karch, J. Necid, J. Aerosol Sci. 27, 931 (1996)CrossRefGoogle Scholar
  15. 15.
    F.J. Romay, D.Y.H. Pui, Aerosol Sci. Technol. 17, 134 (1992)Google Scholar
  16. 16.
    H.Y. Wen, G.P. Reischl, G. Kasper, Aerosol Sci. Technol. 15, 89 (1984)CrossRefGoogle Scholar
  17. 17.
    M. Adachi, K. Okuyama, Y. Kousaka, H. Kozuru, D.Y.H. Pui, Aerosol Sci. Technol. 11, 144 (1989)Google Scholar
  18. 18.
    M. Smith, K. Lee, T. Matsuokas, J. Nanopart. Res. 1, 185 (1999)CrossRefGoogle Scholar
  19. 19.
    A. Wiedensohler, H.J. Fissan, Aerosol Sci. Technol. 14, 358 (1991)Google Scholar
  20. 20.
    N.A. Fuchs, Geofis. Pura Appl. 56, 185 (1963)Google Scholar
  21. 21.
    D. Keefe, P.J. Nolan, J.A. Scott, Proc. R. Ir. Acad. A 66, 2 (1968)Google Scholar
  22. 22.
    N.A. Fuchs, A.G. Sutugin, Highly Dispersed Aerosols (Ann Arbor, London, 1971)Google Scholar
  23. 23.
    J.R. Brock, J. Appl. Phys. 41, 843 (1970)CrossRefGoogle Scholar
  24. 24.
    W.H. Marlow, J.R. Brock, J. Colloid Interf. Sci. 50, 32 (1975)Google Scholar
  25. 25.
    S.W. Davison, J.W. Gentry, Aerosol Sci. Technol. 15, 262 (1984)CrossRefGoogle Scholar
  26. 26.
    W.A. Hoppel, G.M. Frick, Aerosol Sci. Technol. 5, 1 (1986)Google Scholar
  27. 27.
    D.D. Huang, J.H. Seinfeld, W.H. Marlow, J. Colloid Interf. Sci. 140, 258 (1990)Google Scholar
  28. 28.
    Y.S. Mayya, J. Colloid Interf. Sci. 140, 185 (1990)Google Scholar
  29. 29.
    D.Y.H. Pui, S. Fruin, P.H. McMurry, Aerosol Sci Technol. 8, 173 (1988)Google Scholar
  30. 30.
    G.P. Reischl, H.G. Scheibel, K.H. Becker, J. Aerosol Sci. 15, 47 (1984)CrossRefGoogle Scholar
  31. 31.
    A. Hussin, H.G. Scheibel, K.H. Becker, J. Porstendoerfer, J. Aerosol Sci. 14, 671 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of Physical SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations