Spatial distribution of quantum fluctuations in spontaneous down-conversion in realistic situations

Comparison between the stochastic approach and the Green’s function method
  • E. LantzEmail author
  • N. Treps
  • C. Fabre
  • E. Brambilla


We show that in the limit of negligible pump depletion, the spatial distribution of the quantum fluctuations in spontaneous parametric down-conversion can be computed for any shape of the pump beam by using the Green’s function method to linearize the quantum fluctuations, even for very low levels of the intensities measured on the pixels. The results are in complete agreement with stochastic simulations of the Wigner distribution. Both methods show specific quantum effects in realistic situations close to the experiments now in progress, like sub-shot noise correlation between opposite pixels in the far field.


Spatial Distribution Function Method Realistic Situation Quantum Effect Pump Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.F. Abouraddy, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, J. Opt. Soc. Am. B 19, 1174 (2002)Google Scholar
  2. 2.
    E. Brambilla, A. Gatti, L.A. Lugiato, Eur. Phys. J. D 15, 127 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Heidmann, R.J. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, G. Camy, Phys. Rev. Lett. 59, 2555 (1987); O. Aytür, P. Kumar, Phys. Rev. Lett. 65, 1551 (1990)CrossRefGoogle Scholar
  4. 4.
    A. Gatti, E. Brambilla, L.A. Lugiato, M.I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999)Google Scholar
  5. 5.
    B.M. Jost, A.V. Sergienko, A.F. Abouraddy, B.E.A. Saleh, M.C. Teich, Opt. Expr. 3, 81 (1998)Google Scholar
  6. 6.
    F. Devaux, E. Lantz, Eur. Phys. J. D 8, 117 (2000)Google Scholar
  7. 7.
    D.F. Walls, G.J. Milburn, Quantum Optics (Springer Verlag, Berlin, 1994)Google Scholar
  8. 8.
    S. Reynaud, A. Heidman, E. Giacobino, C. Fabre, Progr. Opt. 30, 3 (1992)Google Scholar
  9. 9.
    N. Treps, C. Fabre, Phys. Rev. A 62, 033816 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Gatti, H. Wiedemann, L.A. Lugiato, I. Marzoli, G.L. Oppo, S.M. Barnett, Phys. Rev. A 56, 877 (1997)CrossRefGoogle Scholar
  11. 11.
    E. Lantz, F. Devaux, Eur. Phys. J. D 17, 93 (2001)CrossRefGoogle Scholar
  12. 12.
    E. Brambilla, A. Gatti, M. Bache, L.A. Lugiato, Phys. Rev. A 69, 023802 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Mosset, F. Devaux, G. Fanjoux, E. Lantz, Eur. Phys. J. D 28, 447 (2004)CrossRefGoogle Scholar
  14. 14.
    O. Jedrikiewicz, Y. Jiang, P. Di Trapani, E. Brambilla, A. Gatti, L.A. Lugiato, EH5-4-THU, CLEO/EQEC 2003, MunichGoogle Scholar
  15. 15.
    A. Yariv, Quantum Electronics, 3rd edn. (John Wiley & Sons, 1988), Chaps. 16 and 17Google Scholar
  16. 16.
    M.I. Kolobov, Rev. Mod. Phys. 71, 1539 (1999)CrossRefGoogle Scholar
  17. 17.
    If losses were present (for example absorption), coupling with a vacuum operator would have to be introduced in order to preserve the unitary conditions. See: M.I. Kolobov, L.A. Lugiato, Phys. Rev. A 52, 4930 (1995). In this reference, this operator resulted from a finite pupil after the crystal and had no consequence on any normally-ordered correlation function. However, losses inside the crystal would imply a different situation, with actual parametric fluorescence generated from this introduced vacuum. This situation is outside the scope of the paperCrossRefGoogle Scholar
  18. 18.
    C. Gardiner, Quantum noise (Springer, Berlin, 1991)Google Scholar
  19. 19.
    F. Devaux, E. Lantz, Opt. Commun. 114, 295 (1995)CrossRefGoogle Scholar
  20. 20.
    Note that this property vanishes for higher gains: \(\tilde {C}_{\vec {r},\vec {r}} \) and \(\tilde {C}_{\vec {r},-\vec {r}} \) become almost equal for intensities of several tens of photons per pixel and \(\tilde {C}_{\vec {r},\vec {r}} \) becomes very slightly greater than \(\tilde {C}_{\vec {r},-\vec {r}} \) for intensities greater than 300 photons per pixel. This evolution confirms that quantum effects are more visible when thermal-like fluctuations are not too intense. It is not clear if the complete disappearance of quantum effects for high gains is physical or due to numerical accuracy problems. On the experimental side however, it is quite clear that the sub-shot noise level on the differences cannot be attained when the shot-noise fluctuations are very small compared to the thermal fluctuationsGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Laboratoire d’Optique P.M. Duffieux, Institut Femto ST, UMR 6174 du CNRSUniversité de Franche-ComtéBesançon CedexFrance
  2. 2.Laboratoire Kastler Brossel, UMR 8552 du CNRSUniversité Pierre et Marie CurieParis Cedex 05France
  3. 3.INFM, Dipartimento di Scienze CC.FF.MM.Universitá dell’InsubriaComoItaly

Personalised recommendations