Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections

Article

Abstract.

We determine the universal law for fidelity decay in quantum computations of complex dynamics in presence of internal static imperfections in a quantum computer. Our approach is based on random matrix theory applied to quantum computations in presence of imperfections. The theoretical predictions are tested and confirmed in extensive numerical simulations of a quantum algorithm for quantum chaos in the dynamical tent map with up to 18 qubits. The theory developed determines the time scales for reliable quantum computations in absence of the quantum error correction codes. These time scales are related to the Heisenberg time, the Thouless time, and the decay time given by Fermi’s golden rule which are well-known in the context of mesoscopic systems. The comparison is presented for static imperfection effects and random errors in quantum gates. A new convenient method for the quantum computation of the coarse-grained Wigner function is also proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ekert, R. Josza, Rev. Mod. Phys. 68, 733 (1996)MathSciNetGoogle Scholar
  2. 2.
    A. Steane, Rep. Prog. Phys. 61, 117 (1998)Google Scholar
  3. 3.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)Google Scholar
  4. 4.
    D.P. Di Vincenzo, Science 270, 255 (1995)MathSciNetGoogle Scholar
  5. 5.
    P.W. Shor, in Proc. 35th Annual Symposium on Foundation of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124Google Scholar
  6. 6.
    L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)CrossRefGoogle Scholar
  7. 7.
    S. Lloyd, Science 273, 1073 (1996)MathSciNetGoogle Scholar
  8. 8.
    G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Phys. Rev. A 64, 22319 (2001)Google Scholar
  9. 9.
    B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Sov. Scient. Rev. C 2, 209 (1981); Physica D 33, 77 (1988)MATHGoogle Scholar
  10. 10.
    F.M. Izrailev, Phys. Rep. 196, 299 (1990)CrossRefGoogle Scholar
  11. 11.
    R. Schack, Phys. Rev. A 57, 1634 (1998)MathSciNetGoogle Scholar
  12. 12.
    B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 86, 2890 (2001)CrossRefGoogle Scholar
  13. 13.
    G. Benenti, G. Casati, S. Montangero, D.L. Shepelyansky, Phys. Rev. Lett. 87, 227901 (2001)CrossRefGoogle Scholar
  14. 14.
    A.D. Chepelianskii, D.L. Shepelyansky, Phys. Rev. A 66, 054301 (2002)CrossRefGoogle Scholar
  15. 15.
    A.A. Pomeransky, D.L. Shepelyansky, Phys. Rev. A (to appear), arXiv:quant-ph/0306203Google Scholar
  16. 16.
    B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 86, 5393 (2001); Phys. Rev. Lett. 88, 219802 (2002)CrossRefGoogle Scholar
  17. 17.
    M. Terraneo, B. Georgeot, D.L. Shepelyansky, Eur. Phys. J. D 22, 127 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)CrossRefGoogle Scholar
  19. 19.
    B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 3504 (2000); Phys. Rev. E 62, 6366 (2000)CrossRefGoogle Scholar
  20. 20.
    V.V. Flambaum, Aust. J. Phys. 53, 489 (2000)MATHGoogle Scholar
  21. 21.
    G.P. Berman, F. Borgonovi, F.M. Izrailev, V.I. Tsifrinovich, Phys. Rev. E 64, 056226 (2001)CrossRefGoogle Scholar
  22. 22.
    G. Benenti, G. Casati, D.L. Shepelyansky, Eur. Phys. J. D 17, 265 (2001)CrossRefGoogle Scholar
  23. 23.
    D. Braun, Phys. Rev. A 65, 042317 (2002)CrossRefGoogle Scholar
  24. 24.
    A. Peres, Phys. Rev. A 30, 1610 (1984)CrossRefMathSciNetGoogle Scholar
  25. 25.
    D.L. Shepelyansky, Physica D 8, 208 (1983)CrossRefGoogle Scholar
  26. 26.
    G. Casati, B.V. Chirikov, I. Guarneri, D.L. Shepelyansky, Phys. Rev. Lett. 56, 2437 (1986)CrossRefGoogle Scholar
  27. 27.
    R.A. Jalabert, H.M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001)CrossRefGoogle Scholar
  28. 28.
    P. Jacquod, P.G. Silvestrov, C.W.J. Beenakker, Phys. Rev. E 64, 055203 (2001)CrossRefGoogle Scholar
  29. 29.
    G. Veble, T. Prosen, Phys. Rev. Lett. 92, 034101 (2004)CrossRefGoogle Scholar
  30. 30.
    G. Benenti, G. Casati, Phys. Rev. E 66, 066205 (2002)CrossRefGoogle Scholar
  31. 31.
    T. Prosen, M. Znidaric, J. Phys. A 34, L681 (2001); J. Phys. A 35, 1455 (2002); T. Prosen, T.H. Seligman, M. Znidaric, Prog. Theor. Phys. Supp. 150, 200 (2003)Google Scholar
  32. 32.
    T. Kottos, D. Cohen, Europhys. Lett. 61, 431 (2003)CrossRefGoogle Scholar
  33. 33.
    N.R. Cerruti, S. Tomsovic, Phys. Rev. Lett. 88, 054103 (2002); J. Phys. A 36, 3451 (2003)CrossRefGoogle Scholar
  34. 34.
    Y. Adamov, I.V. Gornyi, A.D. Mirlin, Phys. Rev. E 67, 056217 (2003)CrossRefGoogle Scholar
  35. 35.
    C. Miguel, J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 78, 3971 (1997)MATHGoogle Scholar
  36. 36.
    M. Terraneo, D.L. Shepelyansky, Phys. Rev. Lett. 90, 257902 (2003)CrossRefGoogle Scholar
  37. 37.
    S. Bettelli, arXiv:quant-ph/0310152Google Scholar
  38. 38.
    F.J. Dyson, J. Math. Phys. 3, 140 (1962)MATHGoogle Scholar
  39. 39.
    M.L. Mehta, Random Matrices (Academic, New York, 1991)Google Scholar
  40. 40.
    T. Guhr, A. Mueller-Groeling, H.A. Weidenmueller, Phys. Rep. 299, 189 (1998)CrossRefGoogle Scholar
  41. 41.
    E. Wigner, Phys. Rev. 40, 749 (1932)MATHGoogle Scholar
  42. 42.
    S.-J. Chang, K.-J. Shi, Phys. Rev. A 34, 7 (1986)CrossRefMATHGoogle Scholar
  43. 43.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)CrossRefGoogle Scholar
  44. 44.
    Y.S. Weinstein, S. Lloyd, J. Emerson, D.G. Cory, Phys. Rev. Lett. 89, 157902 (2002)CrossRefGoogle Scholar
  45. 45.
    J. Emerson, Y.S. Weinstein, S. Lloyd, D.G. Cory, Phys. Rev. Lett. 89, 284102 (2002)CrossRefGoogle Scholar
  46. 46.
    B.V. Chirikov, Phys. Rep. 52, 263 (1979)CrossRefGoogle Scholar
  47. 47.
    S. Bullett, Com. Math. Phys. 107, 241 (1986)MathSciNetMATHGoogle Scholar
  48. 48.
    V.V. Vecheslavov, Zh. Eksp. Teor. Fiz. 119, 853 (2001), arXiv:nlin.CD/0005048; V.V. Vecheslavov, B.V. Chirikov, Zh. Eksp. Teor. Fiz. 120, 740 (2001), arXiv:nlin.CD/0202017Google Scholar
  49. 49.
    B.A. Muzykantskii, D.E. Khmelnitskii, Phys. Rev. B 51, 5481 (1995)CrossRefGoogle Scholar
  50. 50.
    A.D. Mirlin, Phys. Rep. 326, 259 (2000)CrossRefMathSciNetGoogle Scholar
  51. 51.
    G. Casati, G. Maspero, D.L. Shepelyansky, Phys. Rev. E 56, R6233 (1997)Google Scholar
  52. 52.
    D.V. Savin, V.V. Sokolov, Phys. Rev. E 56, R4911 (1997)Google Scholar
  53. 53.
    K.M. Frahm, Phys. Rev. E 56, R6237 (1997)Google Scholar
  54. 54.
    D. Gottesman, Phys. Rev. A 57, 127 (1998)CrossRefGoogle Scholar
  55. 55.
    D. Aharonov, M. Ben-Or, arXiv:quant-ph/9906129Google Scholar
  56. 56.
    A. Steane, arXiv:quant-ph/0207119Google Scholar
  57. 57.
    G. Benenti, G. Casati, S. Montangero, D.L. Shepelyansky, Eur. Phys. J. D 20, 293 (2002)CrossRefGoogle Scholar
  58. 58.
    B.L. Altshuler, B.I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)]Google Scholar
  59. 59.
    T. Gorin, T. Prosen, T. H. Seligman, preprint arXiv:nlin.CD/0311022v1Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • K. M. Frahm
    • 1
  • R. Fleckinger
    • 1
  • D. L. Shepelyansky
    • 1
  1. 1.Laboratoire de Physique ThéoriqueUMR 5152 du CNRS, Université Paul SabatierToulouse Cedex 4France

Personalised recommendations