Advertisement

Saddle points of the potential energy surface for HCCF determined by an algebraic approach

  • X. Wang
  • S. DingEmail author
Article

Abstract.

The potential energy surface of the tetratomic molecule HCCF is determined by the U(4) algebraic method. The combination coefficients in the Hamiltonian are gotten from fitting the spectroscopic data. The molecular properties, such as, force constants and dissociation energies, are obtained in terms of the potential energy surface. A saddle point is also derived.

Keywords

Potential Energy Energy Surface Saddle Point Potential Energy Surface Force Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.N. Murrell et al. , Molecular Potential Energy Functions(Mid-country Press, London)Google Scholar
  2. 2.
    S. Ding, Y. Zheng, J. Chem. Phys. 111, 4466 (1999)CrossRefGoogle Scholar
  3. 3.
    Y. Zheng, S. Ding, Chem. Phys. 247, 225 (1999); Chem. Phys. 255, 217 (2000)CrossRefGoogle Scholar
  4. 4.
    A. Arima, F. Iachello, Ann. Phys. (N.Y.) 99, 253 (1976)Google Scholar
  5. 5.
    D.H. Feng, R. Gilmore, Phys. Lett. B 90, 327 (1980)CrossRefGoogle Scholar
  6. 6.
    H.J.L ipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)CrossRefGoogle Scholar
  7. 7.
    D. Guan et al. , Chem. Phys. 224, 243 (1997); 233, 35 (1998)CrossRefGoogle Scholar
  8. 8.
    D. Guan et al. , Int. J. Quant. Chem. 65, 159 (1997); Int. J. Quant. Chem. 63, 981 (1997); Chem. Phys. 218, 1 (1997)CrossRefGoogle Scholar
  9. 9.
    F. Iachello, R.D. Levine, J. Chem. Phys. 77, 3046 (1982)CrossRefMathSciNetGoogle Scholar
  10. 10.
    O.S. van Roosmalen, F. Iachello, R.D. Levine, A.E.L. Dieperink, J. Chem. Phys. 79, 2515 (1983)CrossRefGoogle Scholar
  11. 11.
    I. Benjamin, R.D. Levine, Chem. Phys. Lett. 117, 314 (1985)CrossRefGoogle Scholar
  12. 12.
    I.L. Cooper, R.D. Levine, J. Mol. Struct. (Theochem) 199, 201 (1989)CrossRefGoogle Scholar
  13. 13.
    Y. Zheng, S. Ding, J. Math. Chem. 28, 193 (2000)CrossRefzbMATHGoogle Scholar
  14. 14.
    M. Wang, S. Ding, Phys. Rev. A. 66, 022506 (2002)CrossRefGoogle Scholar
  15. 15.
    F. Iachello, R.D. Levine, Algebraic Theory of Molecules (Oxford University Press, Oxford, 1995)Google Scholar
  16. 16.
    F. Iachello, S. Oss, L. Viola, Mol. Phys. 78, 545 (1993)Google Scholar
  17. 17.
    O.S. van Roosmalen, A.E.L. Dieperink, Ann. Phys. (NY) 139, 198 (1982)Google Scholar
  18. 18.
    E.B. Wilson, J.C. Decius Jr, P.C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955)Google Scholar
  19. 19.
    M.H. Protter, C.B. Morrey Jr, Modern Mathematical Analysis (Addison-Wesley, London, 1964)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.School of Physics and MicroelectronicsShandong UniversityJinanP.R. China
  2. 2.State Key Laboratory of Theoretical and Computational ChemistryInstitute of Theoretical Chemistry, Jilin UniversityChangchunP.R. China

Personalised recommendations