Cylindrical symmetry discrimination of magnetoelectric optical systematic effects in a pump-probe atomic parity violation experiment

  • M.-A. BouchiatEmail author
  • J. Guéna
  • M. Lintz


A pump-probe atomic parity violation (APV) experiment performed in a longitudinal electric field E⃗ l, has the advantage of providing a signal which breaks mirror symmetry but preserves cylindrical symmetry of the set-up, i.e. this signal remains invariant when the pump and probe linear polarizations are simultaneously rotated about their common direction of propagation. The excited vapor acts on the probe beam as a linear dichroic amplifier, imprinting a very specific signature on the detected signal. Our differential polarimeter is oriented to yield a null result unless a chirality of some kind is acting on the excited atoms. Ideally, only the APV (E⃗ l-odd) and the calibration (E⃗ l-even) signals should participate in such a chiral atomic response, a situation highly favourable to sensitive detection of a tiny effect. In the present work, we give a thorough analysis of possible undesirable defects such as spurious transverse fields or misalignments, which may spoil the ideal configuration and generate a chiral response leading to possible systematics. We study a possible way to get rid of such defects by performing global rotations of the experiment by incremental angular steps ϕ, leaving both stray fields and misalignments unaltered. Our analysis shows that at least two defects are necessary for the E⃗ l-odd polarimeter output to be affected; a cos(2ϕ) modulation in the global rotations reveals the transverse nature of the defects. The harmful systematic effects are those which subsist after we average over four configurations obtained by successive rotations of 45°. They require the presence of a stray transverse electric field. By doing auxiliary atomic measurements made in known, applied, magnetic fields which amplify the systematic effect, it is possible to measure the transverse E-field and to minimize it. Transverse magnetic fields must also be carefully compensated following a similar procedure.We discuss the feasibility of reducing the systematic uncertainty below the one percent level. We also propose statistical correlation tests as diagnoses of the aforementioned systematic effects.


32.80.Ys Weak-interaction effects in atoms 32.60.+i Zeeman and Stark effects 33.55.Fi Other magnetooptical and electrooptical effects 42.25.Lc Birefringence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Bouchiat, C. Bouchiat, J. Phys. France 35, 899 (1974); Rep. Prog. Phys. 60, 1351 (1997)CrossRefGoogle Scholar
  2. 2.
    M.J.D. Macpherson et al., Phys. Rev. Lett. 67, 2784 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    D.M. Meekhof et al., Phys. Rev. Lett. 71, 3442 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    J.N.H. Edwards et al., Phys. Rev. Lett. 74, 2654 (1995); P. Vetter et al., Phys. Rev. Lett. 74, 2658 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Bouchiat, J. Guéna, L. Hunter, L. Pottier, Phys. Lett. B 117, 358 (1982); ibid. 134, 463 (1984); J. Phys. France 47, 1709 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    P.S. Drell, E.D. Commins, Phys. Rev. A 32, 2196 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    S.L. Gilbert, C.E. Wieman, Phys. Rev. A 34, 792 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    C.S. Wood et al., Science 275, 1759 (1997)CrossRefGoogle Scholar
  9. 9.
    S.C. Bennett, C.E. Wieman, Phys. Rev. Lett. 82, 2484 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    C.S. Wood et al., Can. J. Phys. 77, 7 (1999); B.P. Masterson et al., Phys. Rev. A 47, 2139 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    J. Guéna et al., e-print arXiv:physics/0210069, J. Phys. 90, 143001 (2003)Google Scholar
  12. 12.
    D. Chauvat et al., Eur. Phys. J. D 1, 169 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    J. Guéna et al., Quant. Semiclass. Opt. 10, 733 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Bouchiat, C. Bouchiat, J. Phys. France 36, 493 (1975)CrossRefGoogle Scholar
  15. 15.
    V.A. Dzuba, V.V. Flambaum, O.P. Sushkov, Phys. Lett. A 141, 147 (1989); S.A. Blundell, J. Sapirstein, W.R. Johnson, Phys. Rev. D 45, 1602 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    A.I. Milstein, O.P. Sushkov, I.S. Terekhov, e-print arXiv:hep-ph/0109257; Phys. Rev. Lett. 89, 283003 (2002); M.Yu. Kuchiev, V.V. Flambaum, Phys. Rev. Lett. 89, 283002 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    V.A. Dzuba et al., Phys. Rev. D 66, 076013 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Bouchiat, Ph. Jacquier, M. Lintz, L. Pottier, Opt. Commun. 56, 100 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Bouchiat, J. Guéna, Ph. Jacquier, M. Lintz, L. Pottier, J. Phys. France 50, 157 (1989)CrossRefGoogle Scholar
  21. 21.
    M.A. Bouchiat, C. Bouchiat, Z. Phys. D 36, 105 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    J. Guéna et al., J. Opt. Soc. Am. B 14, 271 (1997); Opt. Commun. 119, 403 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    V.V. Yashchuk et al., Phys. Rev. Lett. 90, 253001 (2003) and references therein included; see also M. Ducloy, M.P. Gorza, B. Decomps, Opt. Commun. 8, 21 (1973)ADSCrossRefGoogle Scholar
  24. 24.
    J. Guéna et al., Appl. Phys. B 75, 739 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Bouchiat et al., Z. Phys. D 33, 89 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    D. Chauvat et al., Opt. Commun. 138, 249 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    S. Ciraci, I.P. Batra, Phys. Rev. B 28, 982 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Rodriguez et al., J. Phys. Chem. 100, 18240 (1996)CrossRefGoogle Scholar
  29. 29.
    M. Lintz, M.A. Bouchiat, Surf. Sci. 511, L319 (2002)CrossRefGoogle Scholar
  30. 30.
    K.R. Zavadil, J.L. Ing, Conference 950110 (American Institute of Physics, 1995); M. Brause et al., Surf. Sci. 383, 216 (1997)Google Scholar
  31. 31.
    R.C. Jones, J. Opt. Soc. Am. 38, 671 (1948)ADSCrossRefGoogle Scholar
  32. 32.
    T. Roth, G.L.J.A. Rikken,Phys. Rev. Lett. 85, 4478 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    D. Budker, J.E. Stalnaker, arXiv:physics/0302096Google Scholar
  34. 34.
    For a review article of resonant magneto-optical effects in atoms see: D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, A. Weis, Rev. Mod. Phys. 74, 1153 (2002), Section VIADSCrossRefGoogle Scholar
  35. 35.
    L.L. Chao, in Statistics Methods and Analyses, 2nd edn. (Mc-Graw-Hill, 1974) Ch. 14Google Scholar
  36. 36.
    E. Jahier et al., Appl. Phys. B 71, 561 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Authors and Affiliations

  1. 1.Laboratoire Kastler BrosselParis Cedex 05France
  2. 2.Fédération de Recherche, Département de Physique de l'École Normale SupérieureParis Cedex 05France

Personalised recommendations