Advertisement

Numerical simulation for the characterization of operating conditions of RF-RF hybrid plasma torches

  • D. Bernardi
  • V. ColomboEmail author
  • E. Ghedini
  • A. Mentrelli
Article

Abstract.

A two-dimensional (r,z) numerical code has been developed to investigate the prominent features of RF-RF hybrid plasma torches with two stages of different diameter. Flow and temperature fields have been calculated within the assumptions of laminar flow and local thermodynamic equilibrium for the optically thin argon plasma operated at atmospheric pressure, taking into full account the electromagnetic interaction between the primary and the secondary stage of the hybrid device. Results from a detailed parametric study for various geometric, gas flow and electric configurations aim at putting into evidence the wide range of operating conditions that can characterize the use of RF-RF hybrid plasma torches for industrial applications, showing also their possibility to give high enthalpy plasma jets with high torch efficiencies. The magnetofluidynamic modelling described in this work can be an effective tool for providing the theoretical framework for a deep understanding of RF-RF hybrid plasma torches and for designing them as suitable sources for chemical processing of materials, when utilized within an integrated approach that would match the induction plasma torch simulation with the RF generator operating conditions to evaluate the total source efficiency for each particular hybrid configuration.

Keywords

Plasma Temperature Plasma Torch Discharge Power Secondary Stage Secondary Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kameyama, K. Jukuda, Development of an all solid state r.f.-r.f. induction plasma system, 30 kW, 1-15 MHz, Nat. Chem. Lab. Indust. Int. Rep. 21, 4 (1986)Google Scholar
  2. 2.
    J.W. McKelliget, N. El-Kaddah, J. Appl. Phys. 64(6), 2948 (1988)CrossRefGoogle Scholar
  3. 3.
    T. Uesugi, O. Nakamura, T. Yoshida, K. Akashi, J. Appl. Phys. 64(8), 3874 (1988)CrossRefGoogle Scholar
  4. 4.
    T. Kameyama, K. Sakanaka, A. Motoe, T. Tsunoda, T. Nakanaga, N.I. Wakayama, H. Takeo, K. Fukuda, J. Mater. Sci. 25, 1058 (1990)Google Scholar
  5. 5.
    M.I. Boulos, High Temp. Mater. Proc. 1(1), 17 (1997)Google Scholar
  6. 6.
    T. Yoshida, K. Nakagawa, T. Harada, K. Akashi, Plasma Chem. Plasma Proc. 1(1), 113 (1981)CrossRefGoogle Scholar
  7. 7.
    A. Gutsol, J. Larjo, R. Hernberg, Plasma Chem. Plasma Proc. 22(3), 351 (2002)CrossRefGoogle Scholar
  8. 8.
    T. Yoshida, T. Tani, H. Nishimura, K. Akashi, J. Appl. Phys. 54(2), 640 (1983)CrossRefGoogle Scholar
  9. 9.
    J.W. McKelliget, N. El-Kaddah, Metallurg. Trans. B 21, 589 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    V. Colombo, C. Panciatichi, A. Zazo, G. Cocito, L. Cognolato, IEEE Trans. Plasma Sci. 25(5), 1073 (1997)CrossRefMathSciNetGoogle Scholar
  11. 11.
    D. Bernardi, V. Colombo, G.G.M. Coppa, A. D’Angola, Eur. Phys. J. D 14, 337 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    J. Kim, J. Mostaghimi, R. Iravani, IEEE Trans. Plasma Sci. 25, 1023 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    A. Merkhouf, M.I. Boulos, Plasma Sources Sci. Technol. 7, 599 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    A. Merkhouf, M.I. Boulos, J. Phys. D: Appl. Phys. 33, 1581 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    D. Bernardi, V. Colombo, G.G.M. Coppa, E. Ghedini, A. Mentrelli, Investigation on Operating Conditions and Efficiency Optimization of RF-RF Hybrid Plasma Torches, in Progress in Plasma Processing of Materials, Proceedings of the 6th International Thermal Plasma Processing Conference (TPP-6), Strasbourg (France), May 30-June 2, 2000, pp. 359-364, edited by P. Fauchais (New York-Wallingford, Begell House, 2001)Google Scholar
  16. 16.
    D. Bernardi, V. Colombo, G.G.M. Coppa, E. Ghedini, A. Mentrelli, Numerical Modelling of RF-RF Hybrid Plasma Torches and Parametric Study for Various Geometric, Flow and Electric Configurations, in Progress in Plasma Processing of Materials, Proceedings of the 6th International Thermal Plasma Processing Conference (TPP-6), Strasbourg (France), May 30-June 2, 2000, pp. 339-346, edited by P. Fauchais (New York-Wallingford, Begell House, 2001)Google Scholar
  17. 17.
    D. Bernardi, V. Colombo, G.G.M. Coppa, E. Ghedini, A. Mentrelli, Parametric Study on Operating Conditions and Energy Efficiency for Two-Stage Hybrid RF-RF and One-Stage Modified-Coil RF Plasma Torches, in Proceedings of 15th International Symposium on Plasma Chemistry (ISPC-15), Orléans, France, 9-13 July 2001, edited by GREMI, CNRS/University of Orléans, pp. 161-166Google Scholar
  18. 18.
    D. Bernardi, V. Colombo, G.G.M. Coppa, E. Ghedini, A. Mentrelli, Non Conventional Design of Inductiveley Coupled Plasma Torches for Industrial Applications, XV Congresso Nazionale sulla Scienza e Tecnologia del Vuoto, Lecce, Italy, May 17-19, 2000; Vuoto - scienza e tecnologia, XXIX, 3/4, 46-51 (2000)Google Scholar
  19. 19.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow (New York, Hemisphere, 1980)Google Scholar
  20. 20.
    Z. Njah, J. Mostaghimi, M.I. Boulos, Int. J. Heat Mass Transfer 36, 16 (1983)Google Scholar
  21. 21.
    J. Mostaghimi, P. Proulx, M.I. Boulos, Plasma Chem. Plasma Proc. 4, 3 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • D. Bernardi
    • 1
  • V. Colombo
    • 1
    Email author
  • E. Ghedini
    • 1
  • A. Mentrelli
    • 1
  1. 1.Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (DIEM) and Centro Interdipartimentale di Ricerca per le Applicazioni della Matematica (CIRAM)Università di BolognaBolognaItaly

Personalised recommendations