Jump conditions in hypersonic shocks

Quantitative effects of ionic excitation and radiation
  • C. MichautEmail author
  • C. Stehlé
  • S. Leygnac
  • T. Lanz
  • L. Boireau


We study the quantitative effects of excitation, ionization, radiation energy and pressure, on the jump conditions in hypersonic shocks in a real gas. The ionization structure and excitation energies are calculated from the local temperature and density, using the Screened Hydrogenic Model. We assume an optically thick medium and no radiation flux through the shock front. We investigate the jump conditions in different gases and propose a phenomenological description of compression for different shock velocities. We find that the excitation energy term is the dominant term in ionized gases at low velocities. Consequently, higher shock velocities than the values predicted by standard calculations in a perfect gas must be reached in order to observe the effects of radiation in the compression ratio. Our results provide constraints for the design of future radiative shock experiments on the next generation of powerful nanosecond lasers or on Z-pinches.


Compression Ratio Shock Front Jump Condition Local Thermodynamic Equilibrium Shock Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover Pub. Inc., Mineola, New York, 1999)Google Scholar
  2. 2.
    A.B. Fokin, D. Gillet, Astron. Astrophys. 325, 1013 (1997)ADSGoogle Scholar
  3. 3.
    P. Mathias, D. Gillet, A. Lebre, Astron. Astrophys. 341, 853 (1999)ADSGoogle Scholar
  4. 4.
    M. Scholz, P.R. Wood, Astron. Astrophys. 362, 1065 (2000)ADSGoogle Scholar
  5. 5.
    C. Stehlé, J.P. Chiéze, Scientific Highlights 2002, edited by D. Barret, F. Combes (EDP-Sciences, Les Ulis, 2002), p. 493Google Scholar
  6. 6.
    H.A. Bethe, Astrophys. J. 490, 765 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    A. Calder, B. Fryxell, T. Plewa, R. Rosner, L.J. Dursi, V.G. Weirs, T. Dupont, H.F. Robey, J.O. Kane, B.A. Remington, R.P. Drake, G. Dimonte, M. Zingale, F.X. Timmes, K. Olson, P. Ricker, P. MacNeice, H.M. Tufo, Astrophys. J. Suppl. 143, 201 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    K. Shigemori, R. Kodama, D.R. Farley, T. Koase, K.G. Estabrook, B.A. Remington, D.D. Ryutov, Y. Ochi, H. Azechi, J. Stone, N. Turner, Phys. Rev. E 62, 8838 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Laming, J. Grun, Phys. Rev. Lett. 89, 125002 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    K.S. Budil, M. Gold, K.G. Estabrook, B.A. Remington, J. Kane, P.M. Bell, D.M. Pennington, C. Brown, S.P. Hatchett, J.A. Koch, M.H. Key, M.D. Perry, Astrophys. J. Suppl. 127, 261 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    X. Fleury, S. Bouquet, C. Stehlé, M. Koenig, D. Batani, A. Benuzzi-Mounaix, J.-P. Chiéze, N. Grandjouan, J. Grenier, T. Hall, E. Henry, J.-P.J. Lafon, S. Leygnac, B. Marchet, H. Merdji, C. Michaut, F. Thais, Las. Part. Beams 20, 263 (2002)ADSGoogle Scholar
  12. 12.
    P.A. Keiter, R.P. Drake, T.S. Perry, H.F. Robey, B.A. Remington, C.A. Iglesias, R.J. Wallace, J. Knauer, Phys. Rev. Lett. 89, 165003 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    J.E. Bailey, G.A. Chandler, S.A. Slutz, G.R. Bennett, G. Cooper, J.S. Lash, S. Lazier, R. Lemke, T.J. Nash, D.S. Nielsen, T.C. Moore, C.L. Ruiz, D.G. Scroen, R. Smelser, J. Torres, R.A. Vesey, Phys. Rev. Lett. 89, 095004 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    S. Bouquet, R. Teyssier, J.-P. Chiéze, Astrophys. J. Suppl. 127, 245 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and high-Temperature Hydrodynamic Phenomena, edited by W.D. Hayes, R.F. Probstein (Dover Pub. Inc., Mineola, New York, 2001)Google Scholar
  16. 16.
    S.I. Pai, A.I. Speth, Phys. Fluid. 4, 1232 (1961)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    R.A. Alpher, H.D. Greyber, Phys. Fluid. 1, 160 (1958)ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Sachs, Phys. Rev. 69, 514 (1946)ADSCrossRefGoogle Scholar
  19. 19.
    H. Nieuwenhuijzen, C. de Jager, M. Cuntz, A. Lobel, L. Achmad, Astron. Astrophys. 280, 195 (1993)ADSGoogle Scholar
  20. 20.
    K. Eidmann, Las. Part. Beams 12, 223 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    B. Kärcher, Atomphysikalische Beschreibung Ionenstrahl-erzeugter Plasmen (MPQ report, 1991), p. 158Google Scholar
  22. 22.
    R.M. More, Adv. At. Mol. Phys. 21, 305 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    G.C. Pomraning, The equations of Radiation Hydrodynamics (Pergamon Press, Oxford, 1973)Google Scholar
  24. 24.
    C. Stehlé, S. Jacquemot, Astron. Astrophys. 271, 348 (1993)ADSGoogle Scholar
  25. 25.
    D.G. Hummer, D. Mihalas, Astrophys. J. 331, 794 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    C. Michaut, L. Boireau, M. Cornille, S. Leygnac, C. Stehlé, Scientific Highlights 2002, edited by D. Barret, F. Combes (EDP-Sciences, Les Ulis, 2002), p. 543Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • C. Michaut
    • 1
    Email author
  • C. Stehlé
    • 1
  • S. Leygnac
    • 1
  • T. Lanz
    • 1
    • 2
    • 3
  • L. Boireau
    • 1
  1. 1.LUTH, UMR 8102 du CNRSObservatoire de ParisMeudonFrance
  2. 2.Department of AstronomyUniversity of MarylandCollege ParkUSA
  3. 3.NASA Goddard Space Flight CenterCode 681, GreenbeltUSA

Personalised recommendations