Advertisement

Study of non-orthogonal Laguerre-L\(\mathsf{^{2}}\) method for helium atom

  • T. Winata
  • A. KartonoEmail author
Article

Abstract.

We present a technique for describing solutions of the helium atom by using the non-orthogonal Laguerre-L2 basis functions. The frozen-core approximation is used to calculate the helium energies. The completeness of helium wavefunctions obtained is studied in terms of weights of the Gaussian quadrature. The convergence of the energies is shown as the L2 basis size increases and the completeness of the L2 wave functions is also shown for different basis size.

Keywords

Helium Atom Gaussian Quadrature Basis Size Helium Target Laguerre Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.J. Heller, W.P. Reinhardt, H.A. Yamani, J. Comput. Phys. 13, 536 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    E.J. Heller, T.N. Rescigno, W.P. Reinhardt, Phys. Rev. A 8, 2946 (1973)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    E.J. Heller, H.A. Yamani, Phys. Rev. A 9, 1201 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    E.J. Heller, H.A. Yamani, Phys. Rev. A 9, 1209 (1974)ADSCrossRefGoogle Scholar
  5. 5.
    H.A. Yamani, W.P. Reinhardt, Phys. Rev. A 11, 1144 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    A.T. Stelbovics, H.A. Slim, Phys. Rev. A 33, 3993 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    A.T. Stelbovics, T. Winata, Aust. J. Phys. 43, 495 (1990)ADSGoogle Scholar
  8. 8.
    D.A. Konovalov, I.E. McCarthy, J. Phys. B 27, L407 (1994)Google Scholar
  9. 9.
    D.A. Konovalov, I.E. McCarthy, J. Phys. B 28, L139 (1995)Google Scholar
  10. 10.
    A.T. Stelbovics, J. Phys. B 22, L159 (1989)Google Scholar
  11. 11.
    I. Bray, A.T. Stelbovics, Phys. Rev. A 46, 6995 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    D.V. Fursa, I. Bray, Phys. Rev. A. 52, 1279 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    D.V. Fursa, I. Bray, J. Phys. B 30, 757 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    I. Bray, D.V. Fursa, A.S. Kheifets, A.T. Stelbovics, J. Phys. B 35, R117 (2002)Google Scholar
  15. 15.
    I. Bray, A.T. Stelbovics, Convergent close-coupling approach to electron-atom collisions, in Many-particle quantum dynamics in atoms and molecules, edited by V.P. Shevelko, J. Ullrich (Springer, Heidelberg, New York, 2003)Google Scholar
  16. 16.
    H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martin, Rep. Prog. Phys. 64, 1815 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    P.G. Burke, J.F.B. Mitchell, J. Phys. B 14, 320 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Pindzola, F.J. Robicheaux, Phys. Rev. A 61, 052707-1 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions (McGraw-Hill Book Co., Inc., New York, 1953), Vol. IIGoogle Scholar
  20. 20.
    A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Spinger-Verlag, Berlin, 1985), Chaps. 6 and 7Google Scholar
  21. 21.
    NIST Atomic Spectra Database Levels Data He I, http://physics.nist.gov/cgi-bin/AtData/main\_asdGoogle Scholar
  22. 22.
    Y. Accad, C.L. Pekeris, B. Schiff, Phys. Rev. A 4, 516 (1971)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Laboratory for Physics of Electronic Material, Physics Department, Faculty of Mathematical and Natural SciencesInstitut Teknologi BandungBandungIndonesia
  2. 2.Physics Department, Faculty of Mathematical and Natural SciencesInstitut Pertanian BogorBogorIndonesia

Personalised recommendations