Advertisement

Doppler-free spectroscopy in driven three-level systems

  • U. D. Rapol
  • V. NatarajanEmail author
Article

Abstract.

We demonstrate two techniques for studying the features of three-level systems driven by two lasers (called control and probe), when the transitions are Doppler broadened as in room-temperature vapor. For \(\Lambda\)-type systems, the probe laser is split to produce a counter-propagating pump beam that saturates the transition for the zero-velocity atoms. Probe transmission then shows Doppler-free peaks which can even have sub-natural linewidth. For V-type systems, the transmission of the control beam is detected as the probe laser is scanned. The signal shows Doppler-free peaks when the probe laser is resonant with transitions for the zero-velocity group. Both techniques greatly simplify the study of three-level systems since theoretical predictions can be directly compared without complications from Doppler broadening and the presence of multiple hyperfine levels in the spectrum.

Keywords

Pump Beam Rabi Frequency Probe Laser Control Beam Doppler Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Narducci et al. , Phys. Rev. A 42, 1630 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    A.S. Zibrov et al. , Phys. Rev. Lett. 75, 1499 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    G. Vemuri, G.S. Agarwal, B.D. Nageswara Rao, Phys. Rev. A 53, 2842 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Zhu, T.N. Wasserlauf, Phys. Rev. A 54, 3653 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    K.-J. Boller, A. Imamoğlu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    S.E. Harris, Phys. Today 50, 36 (1997)CrossRefGoogle Scholar
  7. 7.
    S. Menon, G.S. Agarwal, Phys. Rev. A 61, 013807 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    D.J. Gauthier, Y. Zhu, T.W. Mossberg, Phys. Rev. Lett. 66, 2460 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    S.-Y. Zhu, L.M. Narducci, M.O. Scully, Phys. Rev. A 52, 4791 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    G.S. Agarwal, Phys. Rev. A 54, R3734 (1996)Google Scholar
  11. 11.
    U.D. Rapol, A. Wasan, V. Natarajan, Phys. Rev. A 67, 053802 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    U.D. Rapol, V. Natarajan, Europhys. Lett. 60, 195 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    C.F. Roos et al. , Phys. Rev. Lett. 85, 5547 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    C. Cohen-Tannoudji, S. Reynaud, J. Phys. B 10, 365 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982)Google Scholar
  16. 16.
    G.S. Agarwal, private communicationGoogle Scholar
  17. 17.
    Conetic AA Alloy, Magnetic Shield Division, Perfection Mica Co., USAGoogle Scholar
  18. 18.
    The separation and linewidth of the two peaks are obtained by fitting to the spectrum with an underlying Doppler profileGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations