Advertisement

Mixed (Ar)\(\mathsf{_{n}}\)(N\(\mathsf{_{2}}\))\(\mathsf{_{m}}\) van der Waals clusters created by pick-up technique

  • S. H. YangEmail author
  • R. Bisson
  • D. V. Daineka
  • M. Châtelet
Article

Abstract.

A comparison of the adsorption efficiencies for Ar atoms on large (N2) m (m = 1320-10600) clusters and N2 molecules on large (Ar) n (n = 7900-17000) clusters has been investigated by the pick-up technique. Using mass spectroscopy, it has been shown that mixed (Ar) n (N2) m clusters can be created either by depositing Ar atoms from buffer gas on the surface of (N2) m clusters or by depositing N2 molecules from buffer gas on the surface of (Ar) n clusters. The composition of mixed (Ar) n (N2) m clusters has been determined as a function of cluster size and buffer gas pressure. The adsorption efficiency for Ar on (N2) m clusters is found to be significantly higher than that for N2 on (Ar) n clusters. This effect is attributed to the difference in Ar-Ar, N2-N2 and Ar-N2 binding energies.

Keywords

Cluster Size Mixed Ratio Cluster Beam Average Cluster Size Mixed Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Goyal, G.N. Robinson, D.L. Schutt, G. Scoles, J. Phys. Chem. 95, 4186 (1991)CrossRefGoogle Scholar
  2. 2.
    T.E. Gough, M. Mengel, P. Rowntree, G. Scoles, J. Chem. Phys. 83, 4958 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    G. Torchet, M.-F. de Feraudy, Y. Loreaux, J. Mol. Struct. 485-486, 261 (1999)Google Scholar
  4. 4.
    E. Fort, F. Pradére, A. De Martino, H. Vach, M. Châtelet, Eur. Phys. J. D 1, 79 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    E. Rulh, A.P. Hitchcock, P. Morin, M. Lavollée, J. Chim. Phys. 92, 521 (1995)Google Scholar
  6. 6.
    Y. Oziki, K. Murano, K. Izumi, T. Fukuyama, Rarefied Gas Dynamics, edited by H. Ogushi (University of Tokyo Press, Tokyo, 1984), p. 775Google Scholar
  7. 7.
    F. Pradére, M. Château, M. Benslimane, M. Bierry, M. Châtelet, D. Clément, A. Guilbaud, J.C. Jeannot, A. De Martino, H. Vach, Rev. Sci. Instrum. 65, 161 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    A. De Martino, M. Benslimane, M. Châtelet, C. Crozes, F. Pradére, H. Vach, Z. Phys. D 27, 185 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    E. Fort, A. De Martino, F. Pradére, M. Châtelet, H. Vach, J. Chem. Phys. 110, 2579 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    J. Farges, M.F. De Feraudy, B. Raoult, G. Torchet, Surf. Sci. 106, 95 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    G. Torchet, P. Schwartz, J. Farges, M.F. De Feraudy, B. Raoult, J. Chem. Phys. 79, 6196 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    D.J. Chartrand, J.C. Shelley, R.J. Le Roy, J. Phys. Chem. 95, 8310 (1991)CrossRefGoogle Scholar
  13. 13.
    L. Beneventi, P. Casavecchia, G. Volpi, C. Wong, F. Mccourt, J. Chem. Phys. 98, 7926 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    J. Hirschfelder, C. Curtiss, R. Byron Bird, Molecular Theory of Gases and Liquids (J. Wiley and Sons Inc., 1967)Google Scholar
  15. 15.
    J.W. Hewage, F.G. Amar, M.F. de Feraudy, G. Torchet, Eur. Phys. J. D 24, 249 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    J.W. Hewage, F.G. Amar, J. Chem. Phys. 119, 9021 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    H. Vach, J. Chem. Phys. 113, 1097 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    H. Vach, Phys. Rev. B 59, 13413 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    H. Vach, J. Chem. Phys. 111, 3536 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    M. Behrens, R. Frochtenicht, M. Hartmann, J.G. Siebers, U. Buck, J. Chem. Phys. 111, 2346 (1995)Google Scholar
  21. 21.
    J. Vigué, P. Labastie, F. Calvo, Eur. Phys. J. D 8, 265 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • S. H. Yang
    • 1
    • 2
    Email author
  • R. Bisson
    • 1
  • D. V. Daineka
    • 1
  • M. Châtelet
    • 1
  1. 1.Laboratoire de Physique des Interfaces et des Couches MincesCNRS, École PolytechniquePalaiseau CedexFrance
  2. 2.Department of PhysicsFudan UniversityShanghaiP.R. China

Personalised recommendations