First-order Fréedericksz transition and front propagation in a liquid crystal light valve with feedback

  • M. G. Clerc
  • T. Nagaya
  • A. Petrossian
  • S. ResidoriEmail author
  • C. S. Riera


Fréedericksz transition can become subcritical in the presence of a feedback mechanism that leads to the dependence of the local electric field onto the liquid crystal re-orientation angle. We have characterized experimentally the first-order Fréedericksz transition in a Liquid Crystal Light Valve with optical feedback. The bistability region is determined, together with the Fréedericksz transition point and the Maxwell point. We show the propagation of fronts connecting the different metastable states and we estimate the front velocity. Theoretically, we derive an amplitude equation, valid close to the Fréedericksz transition point, which accounts for the subcritical character of the bifurcation.


Liquid Crystal Bifurcation Diagram Front Velocity Front Propagation Optical Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. L. Kramer, W. Pesch, in Pattern Formation in Liquid Crystals, edited by A. Buka, L. Kramer (Springer-Verlag, New York, 1996)Google Scholar
  2. 2.
    N.V. Tabiryan, A.V. Sukhov, B.Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986)CrossRefGoogle Scholar
  3. 3.
    Special issue Pattern Formation in Nonlinear Optical Systems, edited by R. Neubecker, T. Tschudi, Chaos, Solitons & Fractals 10 (4–5) (1999); F.T. Arecchi, S. Boccaletti, P.L. Ramazza, Phys. Rep. 318, 1 (1999)CrossRefGoogle Scholar
  4. 4.
    F.T. Arecchi, S. Boccaletti, S. Ducci, E. Pampaloni, P.L. Ramazza, S. Residori, J. Nonlin. Opt. Phys. Mat. 9, 183 (2000)Google Scholar
  5. 5.
    R. MacDonald, H.J. Eichler, Opt. Commun. 89, 289 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    E. Santamato, E. Ciaramella, M. Tamburrini, Mol. Cryst. Liq. Cryst. 251, 127 (1994)CrossRefGoogle Scholar
  7. 7.
    E. Louvergneaux, Phys. Rev. Lett. 87, 244501 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    V. Fréedericksz, V. Zolina, Trans. Faraday Soc. 29, 919 (1933)CrossRefGoogle Scholar
  9. 9.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Oxford Science Publications, Clarendon Press, 1993)Google Scholar
  10. 10.
    S. Chandrasekhar, Liquid Crystal (Cambridge, New York, 1992)Google Scholar
  11. 11.
    M.O. Cáceres, F. Sagués, M. San Miguel, Phys. Rev. A 41, 6852 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    B.J. Frisken, P. Palffy-Muhoray, Phys. Rev. A 39, 1513 (1989); Phys. Rev. A 40, 6099 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    S. Garg, S. Saeed, U.D. Kini, Phys. Rev. E 51, 5846 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    S.D. Durbin, S.M. Arakelian, Y.R. Shen, Phys. Rev. Lett. 47, 1411 (1981); S.R. Nersisyan, N.V. Tabiryan, Mol. Cryst. Liq. Cryst. 116, 111 (1984); A.J. Karn, S.M. Arakelian, Y.R. Shen, H.L. Ong, Phys. Rev. Lett. 57, 448 (1986); E. Santamato, G. Abbate, R. Casaselice, P. Maddalena, A. Sasso, Phys. Rev. A 37, 1375 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    P.Y. Wang, H.J. Zhang, J.H. Dai, Opt. Lett. 12, 654 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    M.G. Clerc, S. Residori, C.S. Riera, Phys. Rev. E 63, 060701 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    R.A. Fisher, Ann. Eugenics 7, 335 (1937)Google Scholar
  18. 18.
    A.N. Kolmogorov, J. Petrovsky, N. Piskunov, Bull. Univ. Moskou Ser. Int. Se. 7(6), 1 (1937)Google Scholar
  19. 19.
    J.D. Murray, Mathematical Biology (Springer-Verlag, Berlin, 1993)Google Scholar
  20. 20.
    P. Kife, Mathematical Aspects of Reacting and Diffusing System, edited by S. Levin, Lecture Notes in Biomathematics (Springer-Verlag, New-York, 1979), Vol. 28Google Scholar
  21. 21.
    D. Walgraef, Spatio-temporal pattern formation (Springer-Verlag, New York, 1997)Google Scholar
  22. 22.
    G. Dee, J.S. Langer, Phys. Rev. Lett. 50, 383 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    P. Manneville, Dissipative structures and weak turbulence (Academic Press, San Diego, 1990)Google Scholar
  24. 24.
    M. Cross, P. Hohenberg, Rev. Mod. Phys. 65, 581 (1993)CrossRefGoogle Scholar
  25. 25.
    D.G. Aronson, H.F. Weinberger, Adv. Math. 30, 33 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    P. Collet, J.P. Eckmann, Instabilities and fronts in extended system (Princeton University Press, New Jersey, 1990)Google Scholar
  27. 27.
    P.L. Ramazza, S. Ducci, F.T. Arecchi, Phys. Rev. Lett. 81, 4128 (1998); J. Bragard, P.L. Ramazza, F.T. Arecchi, S. Boccaletti, L. Kramer, Phys. Rev. E 61, R6045 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    E. Yao, F. Papoff, G.L. Oppo, Phys. Rev. E 59, 2918 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Statistical physics(Pergamon Press, New York, 1969)Google Scholar
  30. 30.
    W.K. Burton, N. Cabrera, F.C. Frank, Phil. Trans. Roy. Soc. Lond. A 243, 299 (1951)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    Y. Pomeau, Physica D 23, 3 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    S.A. Akhmanov, M.A. Vorontsov, V.Yu. Ivanov, JETP Lett. 47, 707 (1988)ADSGoogle Scholar
  33. 33.
    S. Residori, A. Petrossian, L. Gil, Phys. Rev. Lett. 88, 233901-1 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • M. G. Clerc
    • 1
  • T. Nagaya
    • 2
  • A. Petrossian
    • 3
  • S. Residori
    • 4
    Email author
  • C. S. Riera
    • 5
  1. 1.Departamento de Física, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Department of Electrical and Electronic Engineering, Faculty of EngineeringOkayama UniversityJapan
  3. 3.Physics DepartmentYerevan St. University 1375049Armenia
  4. 4.Institut Non Linéaire de NiceUMR 6618 CNRS-UNSAValbonneFrance
  5. 5.DAMTP-CMSCambridgeUK

Personalised recommendations