Advertisement

On the muon transfer from protium to neon

  • S. V. RomanovEmail author
Article

Abstract.

The rate of the muon transfer from the 1S-state of muonic protium to neon is calculated in the interval of collision energies from 10-4 eV to 15 eV. The basic idea of the present treatment is to describe the entrance channel of the transfer reaction at large interatomic separations as correctly as possible. Accordingly, the three-body Hamiltonian is written in the Jacobi coordinates of the entrance channel, and a problem of the muon motion in the field of two fixed Coulomb centers is formulated in these coordinates. Its eigenstates are used as a basis in which the three-body wavefunction is expanded. Finally, the radial functions describing the relative motion in the entrance and transfer channels satisfy a set of coupled ordinary differential equations. Its solution allows one to find diagonal S-matrix elements corresponding to the entrance channel and, as a result, to obtain the total transfer cross-section and the amplitude of the elastic scattering. In this approach the description of the entrance channel proves to be free of the well-known defects -- incorrect dissociation limits and spurious long-range interactions. These defects are manifested only in the transfer channel. However, their effect seems to be not very significant because of large energies of the relative motion in this channel (a few keV). The calculation made here with four two-center \(\sigma\)-states taken into account reasonably reproduces the experimental transfer rate measured in liquid hydrogen-neon mixtures. The situation at room temperatures is worse: the theoretical value of the transfer rate exceeds the experimental one by a factor of two. However, the calculation clearly indicates the existence of a well pronounced minimum of the transfer rate at thermal energies. This result corresponds qualitatively to the experimental fact of a strong suppression of the muon transfer at room temperatures. At collision energies of 0.3-0.5 eV a resonant peak in the transfer rate is predicted. It is due to a quasi-steady state in the D-wave. The elastic scattering of muonic protium by neon is also treated. The effect of the electron screening in the entrance channel is studied in detail. It is found to be very significant right up to collision energies of 1-2 eV.

Keywords

Transfer Rate Collision Energy Neon Elastic Scattering Entrance Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics (Interscience Publ., N.Y., 1969), Sect. 38.4Google Scholar
  2. 2.
    K. Pachucki, Phys. Rev. A 60, 3593 (1999)CrossRefGoogle Scholar
  3. 3.
    P. Hauser et al., Proposal for an experiment at Paul Scherrer Institute, Villigen, No. R-98-03.1, 1998Google Scholar
  4. 4.
    D. Taqqu et al., Hyperf. Interact. 119, 311 (1999)CrossRefGoogle Scholar
  5. 5.
    K. Kodosky, M. Leon, Nuovo Cim. B 1, 41 (1971)Google Scholar
  6. 6.
    G. Carboni, G. Fiorentini, Nuovo Cim. B 39, 281 (1977)Google Scholar
  7. 7.
    T.S. Jensen, V.E. Markushin, preprint PSI-PR-99-32 (Paul Scherrer Institute, Villigen, 1999, www.psi.ch)Google Scholar
  8. 8.
    R.O. Mueller, V.W. Hughes, H. Rosenthal, C.S. Wu, Phys. Rev. A 11, 1175 (1975)CrossRefGoogle Scholar
  9. 9.
    J.S. Cohen, J.N. Bardsley, Phys. Rev. A 23, 46 (1981)zbMATHGoogle Scholar
  10. 10.
    F. Kottmann et al., Hyperf. Interact. 119, 3 (1999)CrossRefGoogle Scholar
  11. 11.
    H. Anderhub et al., Phys. Lett. 143, 65 (1984)CrossRefGoogle Scholar
  12. 12.
    R. Pohl et al., Hyperf. Interact. 119, 77 (1999)CrossRefGoogle Scholar
  13. 13.
    D. Taqqu, preprint PSI-PR-95-07 (Paul Scherrer Institute, Villigen, 1995, www.psi.ch)Google Scholar
  14. 14.
    R. Jacot-Guillarmod, Phys. Rev. A 51, 2179 (1995)CrossRefGoogle Scholar
  15. 15.
    G. Fiorentini, G. Torelli, Nuovo Cim. A 36, 317 (1976)Google Scholar
  16. 16.
    L. Bracci, G. Fiorentini, Nuovo Cim. A 50, 373 (1979)Google Scholar
  17. 17.
    A. Adamczak et al., At. Data Nucl. Data Tables 62, 255 (1996)CrossRefGoogle Scholar
  18. 18.
    S.S. Gershtein, Sov. Phys. JETP 16, 501 (1963)Google Scholar
  19. 19.
    S.S. Gershtein, in Proceedings of the International Symposium on Muonic Atoms and Molecules, Ascona, 1993, edited by L.A. Schaler, C. Petitjean (Monte Verita, the Centro Stefano Franscini, Ascona, 1993), p. 169Google Scholar
  20. 20.
    L. Schellenberg, Muon Cat. Fusion 5/6, 73 (1990/91) and references thereinGoogle Scholar
  21. 21.
    Yu.S. Sayasov, Helv. Phys. Acta 63, 547 (1990)Google Scholar
  22. 22.
    Yu.S. Sayasov, Phys. Lett. A 159, 271 (1991)CrossRefGoogle Scholar
  23. 23.
    R.A. Sultanov, S.K. Adhikari, Phys. Rev. A 62, 022509 (2000)CrossRefGoogle Scholar
  24. 24.
    R.A. Sultanov, S.K. Adhikari, J. Phys. B 35, 935 (2002)CrossRefGoogle Scholar
  25. 25.
    S.I. Vinitskiı, L.I. Ponomarev, Sov. J. Part. Nucl. 13, 557 (1982)Google Scholar
  26. 26.
    K. Kobayashi, T. Ishihara, N. Toshima, Muon Cat. Fusion 2, 191 (1988)zbMATHGoogle Scholar
  27. 27.
    V.I. Komarov, L.I. Ponomarev, S.Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Science Publ., Moscow, 1976), Chap. 2, Sects. 3.1-3.3, 3.5 (in Russian)Google Scholar
  28. 28.
    S.I. Vinitskiı, L.I. Ponomarev, Sov. J. Nucl. Phys. 20, 310 (1974)Google Scholar
  29. 29.
    A.S. Davydov, Quantum Mechanics, 2nd edn. (Science, Moscow, 1973), Sects. 43, 44, 109, 118 (in Russian)Google Scholar
  30. 30.
    J.D. Power, Phil. Trans. Roy. Soc. Lond. 274, 663 (1973)Google Scholar
  31. 31.
    R.J. Damburg, R.Kh. Propin, J. Phys. B 1, 681 (1968)CrossRefGoogle Scholar
  32. 32.
    K. Smith, The Calculation of Atomic Collision Processes (John Wiley & Sons, N.Y., 1971), Sects. 1.4.4, 2.4.1Google Scholar
  33. 33.
    B.R. Jonson, J. Comput. Phys. 13, 445 (1973)zbMATHGoogle Scholar
  34. 34.
    D.A. Abramov, S.Yu. Ovchinnikov, E.A. Solov’ev, Phys. Rev. A 42, 6366 (1990)CrossRefGoogle Scholar
  35. 35.
    G. Holzwarth, H.J. Pfeiffer, Z. Phys. A 272, 311 (1975)Google Scholar
  36. 36.
    A.V. Kravtsov, A.I. Mikhailov, N.P. Popov, J. Phys. B 19, 1323 (1986)CrossRefGoogle Scholar
  37. 37.
    E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)Google Scholar
  38. 38.
    A.A. Radzig, B.M. Smirnov, Parameters of Atoms and Atomic Ions (Energoatomizdat, Moscow, 1986), Sect. 6.1 (in Russian)Google Scholar
  39. 39.
    V.I. Savichev, R. Blümel, Eur. Phys. J. D 21, 3 (2002)CrossRefGoogle Scholar
  40. 40.
    S. Geltman, Phys. Rev. 90, 808 (1953)CrossRefzbMATHGoogle Scholar
  41. 41.
    H.A. Bethe, R.W. Jackiw, Intermediate Quantum Mechanics (W.A. Benjamin Inc., N.Y., 1968), Chap. 14Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Russian Research Centre “Kurchatov Institute”Institute of General and Nuclear PhysicsMoscowRussia

Personalised recommendations