Advertisement

Finite ion temperature effects on oblique modulational stability and envelope excitations of dust-ion acoustic waves

  • I. KourakisEmail author
  • P. K. Shukla
Article

Abstract.

Theoretical and numerical investigations are carried out for the amplitude modulation of dust-ion acoustic waves (DIAW) propagating in an unmagnetized weakly coupled collisionless fully ionized plasma consisting of isothermal electrons, warm ions and charged dust grains. Modulation oblique (by an angle \(\theta\)) to the carrier wave propagation direction is considered. The stability analysis, based on a nonlinear Schrödinger-type equation (NLSE), exhibits a sensitivity of the instability region to the modulation angle \(\theta\), the dust concentration and the ion temperature. It is found that the ion temperature may strongly modify the wave’s stability profile, in qualitative agreement with previous results, obtained for an electron-ion plasma. The effect of the ion temperature on the formation of DIAW envelope excitations (envelope solitons) is also discussed.

Keywords

Dust Soliton Instability Region Dust Concentration Modulational Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics Publishing Ltd., Bristol, 2002)Google Scholar
  2. 2.
    N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)CrossRefGoogle Scholar
  3. 3.
    P.K. Shukla, V.P. Silin, Phys. Scripta 45, 508 (1992)Google Scholar
  4. 4.
    A. Barkan, R. Merlino, N. D’Angelo, Phys. Plasmas 2, 3563 (1995)CrossRefGoogle Scholar
  5. 5.
    J. Pieper, J. Goree, Phys. Rev. Lett. 77, 3137 (1996)CrossRefGoogle Scholar
  6. 6.
    A. Barkan, N. D’Angelo, R. Merlino, Planet. Space Sci. 44, 239 (1996)CrossRefGoogle Scholar
  7. 7.
    F. Verheest, Waves in Dusty Space Plasmas (Kluwer Academic Publishers, Dordrecht, 2001)Google Scholar
  8. 8.
    N.A. Krall, A.W. Trivelpiece, Principles of plasma physics (McGraw-Hill, New York, 1973)Google Scholar
  9. 9.
    Th. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992)Google Scholar
  10. 10.
    T. Taniuti, N. Yajima, J. Math. Phys. 10, 1369 (1969)Google Scholar
  11. 11.
    N. Asano, T. Taniuti, N. Yajima, J. Math. Phys. 10, 2020 (1969)Google Scholar
  12. 12.
    A.S. Davydov, Solitons in Molecular Systems (Kluwer Academic Publishers, Dordrecht, 1985)Google Scholar
  13. 13.
    A. Hasegawa, Optical Solitons in Fibers (Springer-Verlag, 1989)Google Scholar
  14. 14.
    E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge University Press, Cambridge, England, 1990)Google Scholar
  15. 15.
    M. Remoissenet, Waves Called Solitons (Springer-Verlag, Berlin, 1994)Google Scholar
  16. 16.
    K. Shimizu, H. Ichikawa, J. Phys. Soc. Jpn 33, 789 (1972)Google Scholar
  17. 17.
    M. Kako, Prog. Theor. Phys. Suppl. 55, 1974 (1974)Google Scholar
  18. 18.
    T. Kakutani, N. Sugimoto, Phys. Fluids 17, 1617 (1974)Google Scholar
  19. 19.
    M. Kako, A. Hasegawa, Phys. Fluids 19, 1967 (1976)CrossRefGoogle Scholar
  20. 20.
    R. Chhabra, S. Sharma, Phys. Fluids 29, 128 (1986)CrossRefGoogle Scholar
  21. 21.
    M. Mishra, R. Chhabra, S. Sharma, Phys. Plasmas 1, 70 (1994)zbMATHGoogle Scholar
  22. 22.
    V. Chan, S. Seshadri, Phys. Fluids 18, 1294 (1975)CrossRefGoogle Scholar
  23. 23.
    I. Durrani, Phys. Fluids 22, 791 (1979)CrossRefGoogle Scholar
  24. 24.
    J.-K. Xue, W.-S. Duan, L. He, Chin. Phys. 11, 1184 (2002)CrossRefGoogle Scholar
  25. 25.
    This remark excludes e.g. the electron plasma mode, which was found to be stable to parallel perturbations for all carrier wavelengthsGoogle Scholar
  26. 26.
    M.R. Amin, G.E. Morfill, P.K. Shukla, Phys. Rev. E 58, 6517 (1998)CrossRefGoogle Scholar
  27. 27.
    R.-A. Tang, J.-K. Xue, Phys. Plasmas 10, 3800 (2003)CrossRefGoogle Scholar
  28. 28.
    I. Kourakis, P.K. Shukla, J. Math. Phys. (2003, submitted)Google Scholar
  29. 29.
    Xue Jukui, Lang He, Phys. Plasmas 10, 339 (2003)CrossRefGoogle Scholar
  30. 30.
    I.Kourakis, P.K. Shukla, Phys. Plasmas 10, 3459 (2003)CrossRefGoogle Scholar
  31. 31.
    M.R. Amin, G.E. Morfill, P.K. Shukla, Phys. Plasmas 5, 2578 (1998)CrossRefGoogle Scholar
  32. 32.
    I. Kourakis, Proceedings of the 29th EPS meeting on Controlled Fusion and Plasma Physics, European Conference Abstracts (ECA), Vol. 26B P-4.221 (European Physical Society, Petit-Lancy, Switzerland, 2002)Google Scholar
  33. 33.
    Notice that the parameters \(\alpha\), \(\alpha'\), \(\beta\) all take positive values of similar order of magnitude (for Z i=1) and may not be neglectedGoogle Scholar
  34. 34.
    As a matter of fact, the numerical factor \(1/3\) in reference [16] is exactly obtained here upon setting \(\alpha = 1/2\), \(\alpha' = 1/6\), \(\beta = 1\) and \(\sigma = 0\), into our formulaeGoogle Scholar
  35. 35.
    W. Watanabe, J. Plasma Phys. 17, 487 (1977)zbMATHGoogle Scholar
  36. 36.
    W. Watanabe, J. Plasma Phys. 14, 353 (1975)Google Scholar
  37. 37.
    Q.-Z. Luo, N. D’Angelo, R. Merlino, Phys. Plasmas 5, 2868 (1998)CrossRefGoogle Scholar
  38. 38.
    Y. Nakamura, H. Bailung, P.K. Shukla, Phys. Rev. Lett. 83, 1602 (1999)CrossRefGoogle Scholar
  39. 39.
    P.K. Shukla, Phys. Plasmas 10, 1619 (2003)CrossRefGoogle Scholar
  40. 40.
    A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer-Verlag, Berlin, 1975)Google Scholar
  41. 41.
    R. Fedele, H. Schamel, Eur. Phys. J. B 27, 313 (2002)CrossRefGoogle Scholar
  42. 42.
    This expression is readily obtained from reference [41], by shifting the variables therein to our notation as: \(x \rightarrow \zeta\), \(s \rightarrow \tau\), \(\rho_m \rightarrow \rho_0\), \(\alpha \rightarrow 2 P\), \(q_0 \rightarrow - 2 P Q\), \(\Delta \rightarrow L\), \(E \rightarrow \Omega\), \(V_0 \rightarrow u\).Google Scholar
  43. 43.
    S. Flach, C. Willis, Phys. Rep. 295, 181 (1998)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für Theoretische Physik IV, Fakultät für Physik und AstronomieRuhr-Universität BochumBochumGermany

Personalised recommendations