Advertisement

Stark broadening of hydrogen spectral lines with fine structure effects

  • W. OlchawaEmail author
  • R. Olchawa
  • B. Grabowski
Article

Abstract.

Formalism and numerical code have been elaborated for calculation of hydrogen line profiles in conditions of plasma in which Stark broadening and fine energy splitting are comparable and it is not possible to neglect either of them. It corresponds to the range of electron densities \(10^{11} < N_e ({\rm cm}^{-3}) < 10^{15}\). Lamb shift and spontaneous emission effects have also been included. Computer simulation method was applied in the calculations. Final results have been compared with experimental and theoretical findings by other authors.

Keywords

Hydrogen Computer Simulation Fine Structure Spectral Line Computer Simulation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974)Google Scholar
  2. 2.
    P. Kepple, H.R. Griem, Phys. Rev. 173, 317 (1968)CrossRefGoogle Scholar
  3. 3.
    C.R. Vidal, J. Cooper, E.W. Smith, Astrophys. J. Suppl. 25, 37 (1973)CrossRefGoogle Scholar
  4. 4.
    J. Seidel, Z. Naturforsch. 32a, 1195 (1977)Google Scholar
  5. 5.
    C. Stehle, Astron. Astrophys. Suppl. Ser. 104, 509 (1994)Google Scholar
  6. 6.
    C. Stehle, R. Hutcheon, Astron. Astrophys. Suppl. Ser. 140, 93 (1999)CrossRefGoogle Scholar
  7. 7.
    M.A. Gigosos, V. Cardenoso, Phys. Rev. A 37, 5258 (1989)Google Scholar
  8. 8.
    S. Alexiou, P. Poquerusse, E. Leboucher-Dalimier, Phys. Rev. E 59, 3499 (1999)CrossRefGoogle Scholar
  9. 9.
    S. Sorge, S. Günter, Eur. Phys. J. D 12, 369 (2000)CrossRefGoogle Scholar
  10. 10.
    R. Pastor, M.A. Gigosos, M.A. Gonzalez, in Spectral Line Shapes, edited by J. Seidel (API, Berlin, 2000), Vol. 11, p. 79Google Scholar
  11. 11.
    C. Stehle, N. Feauteier, J. Phys. B: At. Mol. Phys. 18, 1297 (1985)CrossRefGoogle Scholar
  12. 12.
    J. Seidel, R. Stamm, J. Quant. Spectrosc. Radiat. Transf. 27, 499 (1982)CrossRefGoogle Scholar
  13. 13.
    G.C. Hegerfeld, V. Kesting, Phys. Rev. A 37, 1488 (1988)CrossRefGoogle Scholar
  14. 14.
    R. Stamm, E.W. Smith, Phys. Rev. A 30, 2039 (1984)CrossRefGoogle Scholar
  15. 15.
    H.A. Bethe, E.E. Salpeter, Quantum mechanics of one- and two-electron atoms (Springer-Verlag, Heidelberg, 1957)Google Scholar
  16. 16.
    J. Halenka, W. Olchawa, J. Quant. Spectrosc. Radiat. Transf. 56, 17 (1996)CrossRefGoogle Scholar
  17. 17.
    W. Olchawa, Ph.D. thesis, Nicholas Copernicus University, Torun, 1997Google Scholar
  18. 18.
    T. Wujec, W. Olchawa, J. Halenka, J. Musielok, Phys. Rev. E 66, 066403 (2002)CrossRefGoogle Scholar
  19. 19.
    J. Halenka, Phys. Rev. E (2003, accepted)Google Scholar
  20. 20.
    S. Alexiou, J. Quant. Spectrosc. Radiat. Transf. 81, 13 (2003)CrossRefGoogle Scholar
  21. 21.
    E.W. Weber, R. Frankenberg, M. Schiling, Appl. Phys. B 32, 63 (1983)Google Scholar
  22. 22.
    H. Ehrich, D.E. Kelleher, Phys. Rev. A 21, 319 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institute of PhysicsOpole UniversityOpolePoland

Personalised recommendations