Advertisement

Theoretical studies of electric quadrupole transition probabilities in Mg II

  • Sonjoy MajumderEmail author
  • G. Gopakumar
  • R. K. Chaudhuri
  • B. P. Das
  • H. Merlitz
  • U. S. Mahapatra
  • D. Mukherjee
Article

Abstract.

The relativistic coupled cluster theory is employed to calculate electric quadrupole (E2) transition probabilities among the doublet states of Mg II which are of interest in astrophysical problems. This is the first time a highly correlated fully ab initio method has been used to compute these quantities for this particular ion. The line strengths and transition probabilities of a number of different transitions are reported and compared with those available in the literature.

Keywords

Electric Quadrupole Line Strength Couple Cluster Quadrupole Transition Doublet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Edlén, Phys. Scripta T 8, 5 (1984)Google Scholar
  2. 2.
    R. Marrus, P.J. Mohr, Adv. At. Mol. Phys. 14, 181 (1978)Google Scholar
  3. 3.
    W.M. Itano, D.J. Wineland, Phys. Rev. A 24, 1364 (1981)CrossRefGoogle Scholar
  4. 4.
    E.U. Condon, G.H. Shortley, Theory of Atomic Spectra (Cambridge Univ. Press, London and New York, 1951)Google Scholar
  5. 5.
    R.H. Garstang, Proc. Cambr. Phil. Soc. 53, 214 (1957)zbMATHGoogle Scholar
  6. 6.
    R.H. Garstang, Proc. Cambr. Phil. Soc. 54, 383 (1958)zbMATHGoogle Scholar
  7. 7.
    G. Racah, Phys. Rev. 62, 438 (1942)CrossRefGoogle Scholar
  8. 8.
    G. Racah, Phys. Rev. 63, 367 (1943)CrossRefGoogle Scholar
  9. 9.
    G.D. Sandlin, G.E. Bruckner, V.E. Scherrev, R. Tousey, Astrophys. J. 205, L47 (1976)Google Scholar
  10. 10.
    J.E. Vernazza, E.M. Reeves, Astrophys. J. Suppl. 37, 485 (1978)CrossRefGoogle Scholar
  11. 11.
    R.W. Wood, R. Fortrat, Astrophys. J. 43, 73 (1916)CrossRefGoogle Scholar
  12. 12.
    Y. Öhman, Astrophys. Space Sci. 144, 353 (1988)Google Scholar
  13. 13.
    G.D. Sandlin, J.-D. Bartoe, G.E. Bruckner, R. Tousey, M.E. Vanhoosier, Astrophys. J. Suppl. 61, 801 (1986)CrossRefGoogle Scholar
  14. 14.
    B. Warner, M.N.R.A.S. 139, 115 (1968)Google Scholar
  15. 15.
    C.E. Tull, M. Jackson, R.P. McEachran, M. Cohen, Can. J. Phys. 50, 1169 (1972)Google Scholar
  16. 16.
    J.H. Black, J.C. Weisheit, E. Laviana, Astrophys. J. 177, 567 (1972)CrossRefGoogle Scholar
  17. 17.
    S. Majumder, H. Merlitz, G. Gopakumar, B.P. Das, U.S. Mahapatra, D. Mukherjee, Astrophys. J. 574, 513 (2002)CrossRefGoogle Scholar
  18. 18.
    J. Sucher, Phys. Scripta 36, 271 (1987)Google Scholar
  19. 19.
    M.H. Mittleman, Phys. Rev. A 24, 1167 (1981)CrossRefGoogle Scholar
  20. 20.
    R.J. Bartlett, in Modern Electronic Structure Theory, edited by D.R. Yarkony (World Scientific 1995), Vol. II, p. 1047Google Scholar
  21. 21.
    R.K. Chaudhuri, P.K. Panda, H. Merlitz, B.P. Das, U.S. Mahapatra, D. Mukherjee, J. Phys. B 33, 5129 (2000)CrossRefGoogle Scholar
  22. 22.
    A.P. Jucys (Yutsis), I.B. Levinson, V.V. Vanagas, Mathematical Apparatus of the Theory Angular Momentum (Israel Program for Scientific Translation, Jerusalem, 1962)Google Scholar
  23. 23.
    E. Baz, E.B. castel, Graphical Methods of Spin Algebras in Atomic, Nuclear and Particle Physics (Dekker, NY, 1972)Google Scholar
  24. 24.
    P.G.H. Sandars, in Atomic Physics and Astrophysica, edited by M. Chrestien, E. Lipworth (Gordon and Breach, London, 1971)Google Scholar
  25. 25.
    I. Lindgren, J. Morrsion, in Atomic Many-body Theory, edited by G. Ecker, P. Lambropoulos, H. Walther (Springer-Verlag, Berlin, 1985), Vol. 3Google Scholar
  26. 26.
    Z.W. Liu, H.P. Kelly, Phys. Rev. A 43, 3305 (1991)CrossRefGoogle Scholar
  27. 27.
    R.K. Chaudhuri, P.K. Panda, B.P. Das, U.S. Mahapatra, D. Mukherjee, J. Phys. B 33, 5129 (2000)CrossRefGoogle Scholar
  28. 28.
    S. Majumder, Studies of Atomic and Molecular Many-Body processes in Astrophysics, thesis, Bangalore University, BangaloreGoogle Scholar
  29. 29.
    G. Gopakumar, H. Merlitz, S. Majumder, R.K. Chaudhuri, B.P. Das, U.S. Mahapatra, D. Mukherjee, Phys. Rev. A 64, 032502 (2001)CrossRefGoogle Scholar
  30. 30.
    R.K. Chaudhuri, P.K. Panda, B.P. Das, Phys. Rev. A 59, 1187 (1999)CrossRefGoogle Scholar
  31. 31.
    S. Majumder, K.P. Geetha, H. Merlitz, B.P. Das, J. Phys. B 34, 2841 (2001)Google Scholar
  32. 32.
    I.P. Grant, B.J. McKenzie, J. Phys. B 13, 2671 (1980)CrossRefMathSciNetGoogle Scholar
  33. 33.
    J. Fleming, A. Hibbert, K.L. Bell, Vaeck, Mon. not. R. Astron. Soc. 300, 767 (1998)CrossRefGoogle Scholar
  34. 34.
    D.C. Morton, Private communicationGoogle Scholar
  35. 35.
    C. Froese Fischer, in website http:/ /www . vuse . vanderbilt . edu/\~ cff/mchf\_collection/Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Sonjoy Majumder
    • 1
    Email author
  • G. Gopakumar
    • 2
  • R. K. Chaudhuri
    • 2
  • B. P. Das
    • 2
  • H. Merlitz
    • 3
  • U. S. Mahapatra
    • 4
  • D. Mukherjee
    • 4
  1. 1.Harish-Chandra Research InstituteAllahabad-19India
  2. 2.Indian Institute of AstrophysicsBangalore-34India
  3. 3.Institut für NanotechnologieForschungszentrum Karlsruhe GmbHKarlsruheGermany
  4. 4.Indian Association for the Cultivation of ScienceCalcuttaIndia

Personalised recommendations