Advertisement

EIT-assisted atomic squeezing

  • A. Dantan
  • M. PinardEmail author
  • P. R. Berman
Article

Abstract.

The interaction of classical and quantized electromagnetic fields with an ensemble of atoms in an optical cavity is considered. Four fields drive a double-\(\Lambda\) level scheme in the atoms, consisting of a pair of \(\Lambda\) systems sharing the same set of lower levels. Two of the fields produce maximum coherence, \(\rho_{12}\approx-1/2\), between the ground state sublevels 1 and 2. This pumping scheme involves equal intensity fields that are resonant with both the one- and two-photon transitions of the \(\Lambda\) system. There is no steady-state absorption of these fields, implying that the fields induce a type Electromagnetically-Induced Transparency (EIT) in the medium. An additional pair of fields interacting with the second \(\Lambda\) system, combined with the EIT fields, leads to squeezing of the atom spin associated with the ground state sublevels. Our method involves a new mechanism for creating steady-state spin squeezing using an optical cavity. As the cooperativity parameter C is increased, the optimal squeezing varies as C -1/3. For experimentally accessible values of C, squeezing as large as 90% can be achieved.

Keywords

Coherence Electromagnetic Field Intensity Field Level Scheme Optical Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen, Phys. Rev. A 50, 67 (1994)CrossRefGoogle Scholar
  2. 2.
    A. Kuzmich, K. Molmer, E.S. Polzik, Phys. Rev. Lett. 79, 4782 (1997)CrossRefGoogle Scholar
  3. 3.
    A. Kuzmich, L. Mandel, J. Janis, Y.E. Young, R. Ejnisman, N.P. Bigelow, Phys. Rev. A 60, 2346 (1999).CrossRefGoogle Scholar
  4. 4.
    L. Vernac, M. Pinard, E. Giacobino, Phys. Rev. A 62, 063812 (2000)CrossRefGoogle Scholar
  5. 5.
    L. Vernac, M. Pinard, E. Giacobino, Eur. Phys. J. D 17, 125 (2001)CrossRefGoogle Scholar
  6. 6.
    L. Vernac, M. Pinard, V. Josse, E. Giacobino, Eur. Phys. J. D 18, 129 (2002)CrossRefGoogle Scholar
  7. 7.
    I. Bouchoule, K. Molmer, Phys. Rev. A 65, 041803 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Andre, M.D. Lukin, Phys. Rev. A 65, 053819 (2002)CrossRefGoogle Scholar
  9. 9.
    I. Bouchoule, K. Molmer, Phys. Rev. A 66, 043811 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Dantan, M. Pinard, V. Josse, N. Nayak, P.R. Berman, Phys. Rev. A 67, 045801 (2003)CrossRefGoogle Scholar
  11. 11.
    For a review of double-lambda sytems with additional references, see M. Lukin, P.R. Hemmer, M.O. Scully, in Advances in Optical, Molecular and Optical Physics, edited by B. Bederson, H. Walther (Academic Press, San Diego, 2000), Vol. 42, pp. 347-386Google Scholar
  12. 12.
    S.E. Harris, L.V. Hau, Phys. Rev. Lett. 82, 4611 (1999)CrossRefGoogle Scholar
  13. 13.
    D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Phys. Rev. Lett. 86, 783 (2001)CrossRefGoogle Scholar
  14. 14.
    C.L. Garrido-Alzar, L.S. Cruz, J.G. Aguirre Gó mez, M. França Santos, P. Nussenzveig, Europhys. Lett. 61, 485 (2003)Google Scholar
  15. 15.
    O. Kocharovskaya, Y. Rostovstev, M.O. Scully, Phys. Rev. Lett. 86, 628 (2001)CrossRefGoogle Scholar
  16. 16.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photons Interactions (Wiley, New-York, 1991), p. 385Google Scholar
  17. 17.
    C.W. Gardiner, Handbook of Stochastic Methods (Springer Verlag, Berlin, 1985)Google Scholar
  18. 18.
    J. Söding, D. Guéry-Odelin, P. Desbiolles, G. Ferrari, J. Dalibard, Phys. Rev. Lett. 80, 1869 (1998)CrossRefGoogle Scholar
  19. 19.
    M. Kitawaga, M. Ueda, Phys. Rev. A 47, 5138 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Laboratoire Kastler Brossel, Case 74Paris Cedex 05France
  2. 2.Michigan Center for Theoretical PhysicsFOCUS Center
  3. 3.Physics DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations