Kinetic simulations of fuel ion transport in ICF target implosions

  • O. LarrocheEmail author


A numerical code solving the ion Vlasov-Fokker-Planck kinetic equation is used to compute the hydrodynamics of the thermonuclear fuel in inertial confinement fusion pellets. Compared with standard hydrodynamics calculations, the kinetic results show enhanced ion transport between the core and the outer part of the target. Consequences are discussed in the case of plastic shells filled with deuterium gas and cryogenic deuterium-tritium targets envisioned for achieving ignition with megajoule-class lasers.


Deuterium Kinetic Equation Outer Part Numerical Code Kinetic Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Atzeni, Plasma Phys. Contr. Fusion 29, 1535 (1987)CrossRefGoogle Scholar
  2. 2.
    L. Spitzer, R. Härm, Phys. Rev. 89, 977 (1953)CrossRefzbMATHGoogle Scholar
  3. 3.
    S.I. Braginskii, shape Transport Processes in a Plasma, Reviews of Plasma Physics, edited by M.A. Leontovich (Consultants Bureau, New York, 1965), p. 205, Vol. 1Google Scholar
  4. 4.
    A.G. Petschek, D.B. Henderson, Nucl. Fusion 19, 1678 (1979)Google Scholar
  5. 5.
    T. Nishikawa, H. Takabe, K. Mima, Jpn J. Appl. Phys. 28, 2004 (1989)Google Scholar
  6. 6.
    M. Casanova, O. Larroche, J.-P. Matte, Phys. Rev. Lett. 67, 2143 (1991)CrossRefGoogle Scholar
  7. 7.
    F. Vidal, J.-P. Matte, M. Casanova, O. Larroche, Phys. Rev. E 52, 4568 (1995)CrossRefGoogle Scholar
  8. 8.
    T. Yabe, K.A. Tanaka, Laser Part. Beams 7, 259 (1989)Google Scholar
  9. 9.
    J.A. Delettrez , 31st Annual Anomalous Absorption Conference (Sedona, AZ, USA, 3-8 June 2001), Paper O5-1Google Scholar
  10. 10.
    P.A. Bradley, D.C. Wilson, Phys. Plasmas 8, 3724 (2001) and references thereinCrossRefGoogle Scholar
  11. 11.
    Y. Saillard, C. R. Acad. Sci. Paris t. 1 IV, 705 (2000)CrossRefGoogle Scholar
  12. 12.
    J.D. Lindl, Phys. Plasmas 2, 3933 (1995)CrossRefGoogle Scholar
  13. 13.
    E.G. Gamaly, Hydrodynamic Instability of Target Implosion in ICF, in Nuclear Fusion by Inertial Confinement - A Comprehensive Treatise, edited by G. Velarde, Y. Ronen, J.M. Martí nez-Val (CRC Press, Boca Raton, Florida, 1993), Chap. 13, p. 321Google Scholar
  14. 14.
    N. Hoffmann, Hydrodynamic Instabilities in Inertial Confinement Fusion, in Laser Plasma Interactions 5: Inertial Confinement Fusion, edited by M.B. Hooper (SUSSP Publications, Edinburgh and IOP Publishing, London, 1995), p. 105Google Scholar
  15. 15.
    S.E. Bodner , Phys. Plasmas 5, 1901 (1998)CrossRefGoogle Scholar
  16. 16.
    C. Bayer , Nucl. Fusion 24, 573 (1984)Google Scholar
  17. 17.
    M.N. Rosenbluth, W.M. MacDonald, D.L. Judd, Phys. Rev. 107, 1 (1957)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    T.A. Mehlhorn, J.J. Duderstadt, J. Comput. Phys. 38, 86 (1980)MathSciNetGoogle Scholar
  19. 19.
    J.J. Honrubia, Charged-Particle Transport in ICF Targets, in Nuclear Fusion by Inertial Confinement - A Comprehensive Treatise, edited by G. Velarde, Y. Ronen, J.M. Martí nez-Val (CRC Press, Boca Raton, Florida, 1993), Chap. 9, p. 211Google Scholar
  20. 20.
    C. Chenais-Popovics shape, Phys. Plasmas 4, 190 (1997)CrossRefGoogle Scholar
  21. 21.
    K. Huang, shape Statistical Mechanics (John Wiley & Sons, New York, 1965)Google Scholar
  22. 22.
    D.L. Book, shape NRL Plasma Formulary, NRL Publication 177-4405 (Naval Research Laboratory, Washington, 1990)Google Scholar
  23. 23.
    O. Larroche, Phys. Fluids B 5, 2816 (1993)CrossRefGoogle Scholar
  24. 24.
    J.J. Honrubia, J.M. Aragonés, Nucl. Sci. Eng. 93, 386 (1986)Google Scholar
  25. 25.
    T.M. Tran, J. Ligou, Nucl. Sci. Eng. 79, 269 (1981)Google Scholar
  26. 26.
    C.Z. Cheng, G. Knorr, J. Comput. Phys. 22, 330 (1976)Google Scholar
  27. 27.
    L. Demeio, J. Comput. Phys. 99, 203 (1992)zbMATHGoogle Scholar
  28. 28.
    E. Sonnendrücker, J. Roche, P. Bertrand, A. Ghizzo, J. Comput. Phys. 149, 201 (1999)CrossRefGoogle Scholar
  29. 29.
    A.J. Klimas, W.M. Farrell, J. Comput. Phys. 110, 150 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    C. de Boor, A Practical Guide to Splines ( Springer-Verlag, New York, 1978)Google Scholar
  31. 31.
    G.I. Marchuk, shape Methods of Numerical Mathematics (Springer-Verlag, New York, 1982)Google Scholar
  32. 32.
    P.M. Morse, H. Feshbach, shape Methods of Theoretical Physics (McGraw-Hill, 1953)Google Scholar
  33. 33.
    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)CrossRefzbMATHGoogle Scholar
  34. 34.
    J.M. Greene, Phys. Fluids 16, 2022 (1973)Google Scholar
  35. 35.
    H.-S. Bosch, G.M. Hale, Nucl. Fusion 32, 611 (1992)CrossRefGoogle Scholar
  36. 36.
    P.W. Rambo, J. Denavit, shape Multi-Fluid Modeling of Interpenetrating Plasmas, Proceedings of the CECAM Workshop on Ion-Kinetic Effects in Laser-Produced Plasmas (Orsay, France, 1992), p. 75Google Scholar
  37. 37.
    E.G. Corman, W.E. Loewe, G.E. Cooper, A.M. Winslow, Nucl. Fusion 15, 377 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.CEA DIFBruyéres-le-ChâtelFrance

Personalised recommendations