Advertisement

Distillation protocols for mixed states of multilevel qubits and the quantum renormalization group

  • M. A. Martín-DelgadoEmail author
  • M. Navascués
Article

Abstract.

We study several properties of distillation protocols to purify multilevel qubit states (qudits) when applied to a certain family of initial mixed bipartite states. We find that it is possible to use qudits states to increase the stability region obtained with the flow equations to distill qubits. In particular, for qutrits we get the phase diagram of the distillation process with a rich structure of fixed points. We investigate the large-D limit of qudits protocols and find an analytical solution in the continuum limit. The general solution of the distillation recursion relations is presented in an appendix. We stress the notion of weight amplification for distillation protocols as opposed to the quantum amplitude amplification that appears in the Grover algorithm. Likewise, we investigate the relations between quantum distillation and quantum renormalization processes.

Keywords

Renormalization Group Stability Region Recursion Relation Continuum Limit Qubit State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lewenstein, D. Bruss, J.I. Cirac, B. Kraus, M. Kus, J. Samsonowicz, A. Sanpera, R. Tarrach, J. Mod. Opt. 47, 2841 (2000)CrossRefGoogle Scholar
  2. 2.
    D. Bruss, J.I. Cirac, P. Horodecki, F. Hulpke, B. Kraus, M. Lewenstein, A. Sanpera, J. Mod. Opt. 49, 1399 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wootters, Phys. Rev. Lett. 76, 722 (1996)CrossRefGoogle Scholar
  4. 4.
    J.W. Pan, C. Simon, C. Brukner, A. Zeilinger, Nature 410, 1067 (2001)CrossRefGoogle Scholar
  5. 5.
    N. Gisin, Phys. Lett. A 210, 151 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    P.G. Kwiat, S. Barraza-Lopez, A. Stefanov, N. Gisin, Nature 409, 1014 (2001)CrossRefGoogle Scholar
  7. 7.
    P.W. Shor, Phys. Rev. A 52, 2493 (1995)CrossRefGoogle Scholar
  8. 8.
    A.M. Steane, Phys. Rev. Lett. 77, 793 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    D. Gottesman, Phys. Rev. A 57, 127 (1998)CrossRefGoogle Scholar
  10. 10.
    J. Preskill, “Fault-tolerant quantum computation”, quant-ph/9712048Google Scholar
  11. 11.
    C.H. Bennett, D.P. DiVincenzo, J. Smolin, W.K. Wooters, Phys. Rev. A 54, 3824 (1996)CrossRefMathSciNetGoogle Scholar
  12. 12.
    D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996)CrossRefGoogle Scholar
  13. 13.
    C. Macchiavello, Phys. Lett. A 246, 385 (1998)CrossRefGoogle Scholar
  14. 14.
    C. Macchiavello, The physics of quantum information, edited by D. Bouwmeester, A. Ekert, A. Zeilinger (Springer-Verlag, 2000)Google Scholar
  15. 15.
    W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, Phys. Rev. A 59, 169 (1999)CrossRefGoogle Scholar
  16. 16.
    W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, quant-ph/9803056Google Scholar
  17. 17.
    M. Horodecki, P. Horodecki, Phys. Rev. A 59, 4206 (1999)CrossRefGoogle Scholar
  18. 18.
    G. Alber, A. Delgado, N. Gisin, I. Jex, “Generalized quantum XOR-gate for quantum teleportation and state purificationin arbitrary dimensional Hilbert spaces”, quant-ph/000802Google Scholar
  19. 19.
    G. Alber, A. Delgado, N. Gisin, I. Jex, “Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces”, quant-ph/0102035Google Scholar
  20. 20.
    H. Bechmann-Pasquinucci, A. Peres, Phys. Rev. Lett. 85, 3313 (2000)CrossRefMathSciNetGoogle Scholar
  21. 21.
    H. Bechmann-Pasquinucci, W. Tittel, Phys. Rev. A 61, 062308 (2000)CrossRefGoogle Scholar
  22. 22.
    M. Bourennane, A. Karlsson, G. Björk, Phys. Rev. A 64, 012306 (2001)CrossRefGoogle Scholar
  23. 23.
    C.H. Bennett, H.J. Berstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)Google Scholar
  24. 24.
    J. González, M.A. Martín-Delgado, G. Sierra, A.H. Vozmediano, Quantum Electron Liquids and High-T c Superconductivity, Lecture Notes in Physics, Monographs (Springer-Verlag, 1995), Vol. 38Google Scholar
  25. 25.
    M.A. Martín-Delgado, G. Sierra, Int. J. Mod. Phys. A 11, 3147 (1996)Google Scholar
  26. 26.
    S.R. White, Phys. Rev. B 48, 10345 (1993)CrossRefGoogle Scholar
  27. 27.
    A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, Nature 412, 3123 (2001)CrossRefGoogle Scholar
  28. 28.
    H.H. Arnaut, G.A. Barbosa, Phys. Rev. Lett. 85, 286 (2000).CrossRefGoogle Scholar
  29. 29.
    S. Franke-Arnold, S.M. Barnett, Phys. Rev. A 65, 033823 (2002)CrossRefGoogle Scholar
  30. 30.
    M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73, 58 (1994)CrossRefGoogle Scholar
  31. 31.
    M. Zukowski, A. Zeilinger, M.A. Horne, Phys. Rev. A 55, 2564 (1997)CrossRefGoogle Scholar
  32. 32.
    G. Molina-Terriza, J.P. Torres, L. Torner, Phys. Rev. Lett. 88, 013601 (2002)CrossRefGoogle Scholar
  33. 33.
    J. Leach, M.J. Padgett, S.M. Barnett, S. Franke-Arnold, J. Courtial, Phys. Rev. Lett. 88, 257901 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Departamento de Física Teórica IUniversidad ComplutenseMadridSpain

Personalised recommendations