The dressed states of an electron in a one-dimensional two \(\delta\)-functions potential

  • C. Chirilã
  • M. Boca
  • V. Dinu
  • V. FlorescuEmail author


We study, in the framework of the high-frequency Floquet theory, the one-dimensional system consisting of an electron interacting with a symmetric two \(\delta\)-functions potential in the presence of an intense monochromatic homogeneous electric field. Most of the results concern the attractive case. They include the dependence of the bound states energies of the dressed potential and of some of its resonances positions on the electric field parameter \(\alpha_0\) (the classical free electron quiver motion amplitude) and on the distance between the two centers and the description of the evolution from resonances to laser induced levels via two antibound states. The repulsive case is described briefly.


State Energy Free Electron Field Parameter Motion Amplitude Resonance Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atoms in Intense Fields, edited by M. Gavrila (Academic Press, New York, 1992)Google Scholar
  2. 2.
    M. Gavrila, J. Phys. B: At. Mol. Phys. 35, R147 (2002)Google Scholar
  3. 3.
    J.C. Wells, I. Simbotin, M. Gavrila, Phys. Rev. A 56, 3961 (1997)CrossRefGoogle Scholar
  4. 4.
    M. Gavrila, J.Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984)CrossRefGoogle Scholar
  5. 5.
    T.P. Grozdhanov, P.S. Krstic, M.H. Mittlemann, Phys. Lett. A 149, 144 (1990)CrossRefGoogle Scholar
  6. 6.
    M. Pont, M. Gavrila, Phys. Lett. A 123, 469 (1987)CrossRefGoogle Scholar
  7. 7.
    J. Shertzer, A. Chandler, M. Gavrila, Phys. Rev. Lett. 73, 2039 (1994)CrossRefGoogle Scholar
  8. 8.
    M. Marinescu, M. Gavrila, Phys. Rev. A 53, 2513 (1996)CrossRefGoogle Scholar
  9. 9.
    M. Stroe, M. Boca, V. Dinu, V. Florescu, Laser Phys. (accepted, 2003)Google Scholar
  10. 10.
    M. Dörr, R.M. Potvliege, J. Phys. B 33, L233 (2000)Google Scholar
  11. 11.
    A.A. Frost, J. Chem. Phys. 25, 1150 (1956)Google Scholar
  12. 12.
    I. Richard Lapidus, Am. J. Phys. 38, 905 (1970)Google Scholar
  13. 13.
    D. Lessie, J. Spadaro, Am. J. Phys. 54, 909, (1986)Google Scholar
  14. 14.
    C.L. Hammer, T.A. Weber, V.S. Zidell, Am. J. Phys. 45, 933 (1977)Google Scholar
  15. 15.
    S.H. Patil, A.S. Roy, Phys. Scripta A 253, 517 (1998)CrossRefGoogle Scholar
  16. 16.
    Jan Mostowski, J.H. Eberly, J. Opt. Soc. Am. B 8, 1212 (1991)Google Scholar
  17. 17.
    M. Boca, C. Chirilã, M. Stroe, V. Florescu, Phys. Lett. A 286, 410 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    M. Gavrila, in Atoms in Intense Fields, edited by M. Gavrila (Academic Press, New York, 1992), p. 435Google Scholar
  19. 19.
    A. Galindo, P. Pascual, Quantum Mechanics (Springer Verlag, Berlin, 1990), Vol. IGoogle Scholar
  20. 20.
    C.J. Joachain, Quantum Collision Theory (North-Holland, Amsterdam, 1987)Google Scholar
  21. 21.
    H.M. Nussenzveig, Nucl. Phys. 11, 499 (1959)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of BucharestBucharest-MagureleRomania

Personalised recommendations