Numerical simulations on the motion of atoms travelling through a standing-wave light field

  • S. J. H. PetraEmail author
  • K. A. H. van Leeuwen
  • L. Feenstra
  • W. Hogervorst
  • W. Vassen


The motion of metastable helium atoms travelling through a standing light wave is investigated with a semi-classical numerical model. The results of a calculation including the velocity dependence of the dipole force are compared with those of the commonly used approach, which assumes a conservative dipole force. The comparison is made for two atom guiding regimes that can be used for the production of nanostructure arrays; a low power regime, where the atoms are focused in a standing wave by the dipole force, and a higher power regime, in which the atoms channel along the potential minima of the light field. In the low power regime the differences between the two models are negligible and both models show that, for lithography purposes, pattern widths of 150 nm can be achieved. In the high power channelling regime the conservative force model, predicting 100 nm features, is shown to break down. The model that incorporates velocity dependence, resulting in a structure size of 40 nm, remains valid, as demonstrated by a comparison with quantum Monte-Carlo wavefunction calculations.


Standing Wave Force Model Light Wave Light Field Helium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Timp, R.E. Behringer, D.M. Tennant, J.E. Cunningham, M. Prentiss, K.K. Berggren, Phys. Rev. Lett. 69, 1636 (1992)CrossRefGoogle Scholar
  2. 2.
    J.J. McClelland, R.E. Scholten, E.C. Palm, R.J. Celotta, Science 262, 877 (1993)Google Scholar
  3. 3.
    R.W. McGowan, D.M. Giltner, S.A. Lee, Opt. Lett. 20, 2535 (1995)Google Scholar
  4. 4.
    F. Lison, H.J. Adams, D. Haubrich, M. Kreis, S. Nowak, D. Meschede, Appl. Phys. B 65, 419 (1997)CrossRefGoogle Scholar
  5. 5.
    K.S. Johnson, J.H. Thywissen, N.H. Dekker, K.K. Berggren, A.P. Chu, R. Younkin, M. Prentiss, Science 280, 1583 (1998)CrossRefGoogle Scholar
  6. 6.
    P. Engels, S. Salewski, H. Levsen, K. Sengstock, W. Ertmer, Appl. Phys. B 69, 407 (1999)CrossRefGoogle Scholar
  7. 7.
    D. Meschede, H. Metcalf, J. Phys. D 36, R17 (2003)Google Scholar
  8. 8.
    K.K. Berggren, M. Prentiss, G.L. Timp, R.E. Behringer, J. Opt. Soc. Am. B 11, 1166 (1994)Google Scholar
  9. 9.
    J.J. McClelland, J. Opt. Soc. Am. B 12, 1761 (1995)Google Scholar
  10. 10.
    C.J. Lee, Phys. Rev. A 61, 063604 (2000)CrossRefGoogle Scholar
  11. 11.
    V.G. Minogin, O.T. Serimaa, Opt. Commun. 30, 373 (1979)Google Scholar
  12. 12.
    Q. Li, B.W. Stenlake, I.C.M. Littler, H.-A. Bachor, K.G.H. Baldwin, D.E. McClelland, Laser Phys. 4, 983 (1994)zbMATHGoogle Scholar
  13. 13.
    Q. Li, K.G.H. Baldwin, H.-A. Bachor, D.E. McClelland, J. Opt. Soc. Am. B 13, 257 (1996)Google Scholar
  14. 14.
    S. Nowak, T. Pfau, J. Mlynek, Appl. Phys. B 63, 203 (1996)CrossRefGoogle Scholar
  15. 15.
    R.J. Cook, Phys. Rev. A 20, 224 (1979)CrossRefGoogle Scholar
  16. 16.
    A. Ashkin, Phys. Rev. Lett. 40, 729 (1978)CrossRefGoogle Scholar
  17. 17.
    V.G. Minogin, V.S. Letokhov, Laser light pressure on atoms (Gordon and Breach, New York, 1987)Google Scholar
  18. 18.
    J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707 (1985)Google Scholar
  19. 19.
    E. Kyrölä, S. Stenholm, Opt. Commun. 22, 123 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • S. J. H. Petra
    • 1
    Email author
  • K. A. H. van Leeuwen
    • 1
  • L. Feenstra
    • 1
  • W. Hogervorst
    • 1
  • W. Vassen
    • 1
  1. 1.Atomic and Laser Physics GroupLaser Centre Vrije UniversiteitHV AmsterdamThe Netherlands

Personalised recommendations