Comparison of different techniques for the FLUENT\(^{\copyright}\)-based treatment of the electromagnetic field in inductively coupled plasma torches

  • D. Bernardi
  • V. ColomboEmail author
  • E. Ghedini
  • A. Mentrelli


A new technique for using the CFD commercial code FLUENT\(^{\copyright}\) to simulate inductively coupled plasma torches by means of two-dimensional axisymmetric models is presented. The method is based on an external user-defined function (UDF) which fully solves the electromagnetic field equations, letting the FLUENT\(^{\copyright}\) built-in module calculate only the plasma temperature and velocity fields inside the torch region. In this framework, computations have been carried out for LTE, optica lly thin argon plasmas at atmospheric pressure, using extended grid models with either magnetic dipole or vanishing vector potential boundary conditions for the electromagnetic field. It is shown that our newly developed technique is up to 60% faster on each iteration than that using user-defined scalars (UDS) previously proposed in the literature, as the need of solving flow field equations also outside the plasma zone is eliminated. Calculations are also performed using exact integral boundary conditions for the vector potential, as given by the standard electromagnetic field approach, taking into account the effects of both exciting and induced currents. The corresponding results are compared with the approximate ones obtained by employing extended grid models, showing that for small radial dimensions of the electromagnetic field domain, the magnetic dipole boundary conditions give more realistic solutions than those assuming a vanish ing vector potential.


Electromagnetic Field Magnetic Dipole Integral Boundary Condition Plasma Zone Code Fluent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli, in Atti del XVI Congresso dell’Associazione Italiana del Vuoto, Catania (Italy), 7-9 October 2002, edited by Editrice Compositori (Bologna, 2003), pp. 267-272Google Scholar
  2. 2.
    D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli, Eur. Phys. J. D 22, 119 (2003)CrossRefGoogle Scholar
  3. 3.
    R. Ye, P. Proulx, M.I. Boulos, Int. J. Heat Mass Trans. 42, 1585 (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    S. Xue, P. Proulx, M.I. Boulos, Plasma Chem. Plasma Process. 23, 245 (2003)CrossRefGoogle Scholar
  5. 5.
    X. Chen, J. Phys. D: Appl. Phys. 22, 361 (1989)CrossRefzbMATHGoogle Scholar
  6. 6.
    J. Mostaghimi, M.I. Boulos, Plasma Chem. Plasma Process. 9, 25 (1989)Google Scholar
  7. 7.
    X. Chen, E. Pfender, Plasma Chem. Plasma Process. 11, 103 (1991)zbMATHGoogle Scholar
  8. 8.
    V. Colombo, C. Panciatichi, A. Zazo, G. Cocito, L. Cognolato, IEEE Trans. Plasma Sci. 25, 1073 (1997)CrossRefGoogle Scholar
  9. 9.
    D. Bernardi, V. Colombo, G.G.M. Coppa, A. D’Angola, Eur. Phys. J. D 14, 337 (2001)CrossRefGoogle Scholar
  10. 10.
    S. Xue, P. Proulx, M.I. Boulos, J. Phys. D: Appl. Phys. 34, 1897 (2001)CrossRefGoogle Scholar
  11. 11.
    J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), pp. 219-223Google Scholar
  12. 12.
    R.C. Miller, R.J. Ayen, J. Appl. Chem. 40, 5260 (1969)Google Scholar
  13. 13.
    S. Xue, P. Proulx, M.I. Boulos, J. Phys. D: Appl. Phys. 35, 1123 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Xue, P. Proulx, M.I. Boulos, J. Phys. D: Appl. Phys. 35, 1131 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • D. Bernardi
    • 1
  • V. Colombo
    • 1
    Email author
  • E. Ghedini
    • 1
  • A. Mentrelli
    • 1
  1. 1.Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia (D.I.E.M.) and C.I.R.A.M.Università degli Studi di BolognaBolognaItaly

Personalised recommendations