Advertisement

An excess electron connects uracil to glycine

Ab-initio study
  • A. F. Jalbout
  • K. Y. Pichugin
  • L. AdamowiczEmail author
OriginalPaper

Abstract.

In recent work Gutowski et al. [Eur. Phys. J. D 20, 431 (2002)] reported photoelectron-spectroscopy and theoretical study of covalent anion of the uracil-glycine complex. In present work we use ab initio calculations to describe an anionic complex of uracil and glycine where the excess electron is localized in a diffuse state between the two monomers. In this system the uracil and glycine molecules are separated by about 4.5 Å and the dipoles of the two monomers point at the excess electron located in the middle of the complex. The calculated fragmentation energy of the anion into a dipole-bound uracil anion and a neutral glycine molecule is 1.7 kcal/mol.

Keywords

Glycine Recent Work Uracil Anionic Complex Diffuse State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Galetich, S.G. Stepanian, V. Shelkovsky, M. Kosevich, L. Adamowicz, Mol. Phys. 100, 3649 (2002)CrossRefGoogle Scholar
  2. 2.
    I. Galetich, S.G. Stepanian, V. Shelkovsky, M. Kosevich, Yu.P. Blagoi, L. Adamowicz, J. Phys. Chem. A 104, 8965 (2000)CrossRefGoogle Scholar
  3. 3.
    I. Galetich, S.G. Stepanian, V. Shelkovsky, M. Kosevich, Yu.P. Blagoi, L. Adamowicz, J. Phys. Chem. B 103, 11211 (1999)CrossRefGoogle Scholar
  4. 4.
    I. Galetich, M. Kosevich, V. Shelkovsky, S.G. Stepanian, Yu.B. Blagoi, L. Adamowicz, J. Mol. Struct. 478, 155 (1999)CrossRefGoogle Scholar
  5. 5.
    J.E. Anderson, M. Ptashne, S.C. Harrison, Nature 326, 846 (1987)CrossRefGoogle Scholar
  6. 6.
    T.I. Smolyaninova, V.I. Bruskov, Ye.V. Kashparova, Molec. Biol. (Russ.) 19, 992 (1985)Google Scholar
  7. 7.
    C. Helene, G. Lancelot, Prog. Biophys. Molec. Biol. 39, 1 (1982)CrossRefGoogle Scholar
  8. 8.
    K.T. O’Neil, R.H. Hoess, W.F. DeGrado, Science 249, 774 (1990)Google Scholar
  9. 9.
    S.Y. Wodak, M.Y. Lin, H.W. Wyckoff, J. Molec. Biol. 116, 855 (1977)Google Scholar
  10. 10.
    L. Fairall, J.W.R. Schwabe, L. Chapman, J.T. Finch, D. Rhodes, Nature 366, 483 (1993)CrossRefGoogle Scholar
  11. 11.
    R.S. Hedge, S.R. Grossman, L.A. Lainins, P.B. Sigler, Nature 359, 505 (1992)CrossRefGoogle Scholar
  12. 12.
    Y. Kim, J.H. Geiger, S. Hahn, P.B. Sigler, Nature 365, 512 (1993)Google Scholar
  13. 13.
    J.L. Kim, D.B. Nikolov, S.K. Burley, Nature 365, 520 (1993)PubMedGoogle Scholar
  14. 14.
    R. Arni, U. Heinemann, R. Tokuoka, W. Saenger, J. Biol. Chem. 263, 15358 (1988)Google Scholar
  15. 15.
    K. Aflatooni, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A 102, 6205 (1998) CrossRefGoogle Scholar
  16. 16.
    V. Periquet, A. Moreau, S. Carles, J.P. Schermann, C.J. Desfrançois, Electron Spectrosc. Relat. Phenom. 106, 141 (2000)CrossRefGoogle Scholar
  17. 17.
    C.J. Desfrançois, V. Periquet, Y. Bouteiller, J.P. Schermann, J. Phys. Chem. A 102, 1274 (1998)CrossRefGoogle Scholar
  18. 18.
    S.D. Wetmore, R.J. Boyd, L.A. Eriksson, Chem. Phys. Lett. 322, 129 (2000)CrossRefGoogle Scholar
  19. 19.
    S.S. Wesolowski, M.L. Leininger, P.N. Pentchew, H.F. Schaefer III, J. Am. Chem. Soc. 123, 4023 (2001)CrossRefGoogle Scholar
  20. 20.
    M.D. Sevilla, B. Besler, A.O. Colson, J. Phys. Chem. 99, 1060 (1995)Google Scholar
  21. 21.
    G.H. Roehrig, N.A. Oyler, L. Adamowicz, J. Phys. Chem. 99, 14285 (1995)Google Scholar
  22. 22.
    E.C.M. Chen, E.S. Chen, J. Phys. Chem. B 104, 7835 (2000)CrossRefGoogle Scholar
  23. 23.
    X. Li, Z. Cai, M.D. Sevilla, J. Phys. Chem. B 105, 10115 (2001)CrossRefGoogle Scholar
  24. 24.
    X. Li, Z. Cai, M.D. Sevilla, J. Phys. Chem. 106, 1596 (2002)CrossRefGoogle Scholar
  25. 25.
    N.A. Oyler, L. Adamowicz, J. Phys. Chem. 97, 11122 (1993)Google Scholar
  26. 26.
    A.O. Colson, B. Besler, M.D. Sevilla, J. Phys. Chem. 96, 9787 (1992)Google Scholar
  27. 27.
    J. Smets, A.F. Jalbout, L. Adamowicz, Chem. Phys. Lett. 342, 342 (2001)CrossRefGoogle Scholar
  28. 28.
    N.J. Saettel, O. Wiest, J. Am. Chem. Soc. 123, 2693 (2001)CrossRefGoogle Scholar
  29. 29.
    X. Li, Z. Cai, M.D. Sevilla, J. Phys. Chem. B 105, 10115 (2001)CrossRefGoogle Scholar
  30. 30.
    I. Al-Jihad, J. Smets, L. Adamowicz, J. Phys. Chem. A 104, 2994 (2000)CrossRefGoogle Scholar
  31. 31.
    N.A. Richardson, S.S. Wesolowski, H.F. Schaefer III, J. Phys. Chem. 107, 848 (2003)CrossRefGoogle Scholar
  32. 32.
    M. Gutowski, I. Dabrowska, J. Rak, S. Xu, J.M. Nilles, D. Radisic, K.H. Bowen Jr, Eur. Phys. J. D 20, 431 (2002)CrossRefGoogle Scholar
  33. 33.
    C. Desfrançois, H. Abdul-Carime, J.P. Schermann, J. Chem. Phys. 104, 7792 (1996)CrossRefGoogle Scholar
  34. 34.
    J.H. Hendricks, S.A. Lyapustina, H.L. de Clercq, J.T. Snodgrass, K.H. Bowen, J. Chem. Phys. 104, 7788 (1996)CrossRefGoogle Scholar
  35. 35.
    J.H. Hendricks, S.A. Lyapustina, H.L. de Clercq, K.H. Bowen, J. Chem. Phys. 108, 8 (1998)CrossRefGoogle Scholar
  36. 36.
    M. Gutowski, C.S. Hall, L. Adamowicz, J.H. Hendricks, H.L. de Clercq, S.A. Lyapustina, J.M. Nilles, S.-J. Xu, K.H. Bowen, Phys. Rev. Lett. 88, 143003 (2002)CrossRefGoogle Scholar
  37. 37.
    A.F. Jalbout, C.S. Hall, L. Adamowicz, Chem. Phys. Lett. 354, 128 (2002)CrossRefGoogle Scholar
  38. 38.
    R.N. Compton, F.B. Dunning, P. Nordlander, Chem. Phys. Lett. 253, 8 (1996)CrossRefGoogle Scholar
  39. 39.
    Kwang S. Kim, Ickjin Park, Sik Lee, K. Cho, Jin Yong Lee, Jongseob Kim, J.D. Joannopoulos, Phys. Rev. Lett. 76, 956 (1996)CrossRefGoogle Scholar
  40. 40.
    M.J. Frisch , Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ArizonaTucsonUSA

Personalised recommendations