On the theory of nonadiabatic bridge-mediated electron transfer

Influence of structural and energetic disorder
  • L. Bade
  • E. G. Petrov
  • V. MayEmail author


Effects of structural and energetic disorder on nonadiabatic electron transfer (ET) reactions are discussed theoretically. To account for the sequential as well as the superexchange mechanism of ET our recent approach is used presented in J. Phys. Chem. A 105, 10176 (2001). The overall charge motion is characterized by the numerical solution of rate equations for the electronic state populations and an averaging with respect to the disorder configurations. Introducing a single effective transfer rate which can be deduced from the experiment the dependence of this rate is discussed on the geometry of the ET system as well as on the disorder model. The theory is applied to donor-acceptor complexes connected by oligomers of the amino acid proline. In particular, a pronounced dependence is found of the effective transfer rate on disorder with respect to the reorganization energy.


Proline Oligomer Electron Transfer Electronic State Rate Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Special issue: Adv. Chem. Phys. 106-107 (1999), edited by J. Jortner, M. Bixon (series eds. I. Prigogine, S.A. Rice)Google Scholar
  2. 2.
    V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, Berlin, 1999Google Scholar
  3. 3.
    E. Gudowska-Nowak, G. Papp, J. Brickmann, J. Phys. Chem. A 102, 9554 (1998)CrossRefGoogle Scholar
  4. 4.
    M. Kemp, V. Mujica, M.A. Ratner, J. Chem. Phys. 101, 5172 (1994)CrossRefGoogle Scholar
  5. 5.
    M. Kemp, A. Roitberg, V. Mujica, T. Wanta, M.A. Ratner, J. Phys. Chem. 100, 8349 (1996)CrossRefGoogle Scholar
  6. 6.
    V.S. Pande, J.N. Onuchic, Phys. Rev. Lett. 78, 126 (1997)CrossRefGoogle Scholar
  7. 7.
    A. Okada, V. Chernyak, S. Mukamel, J. Phys. Chem. A 102, 1241 (1998)CrossRefGoogle Scholar
  8. 8.
    L.W. Ungar, M.D. Newton, G.A. Voth, J. Phys. Chem. B 103, 7367 (1999)CrossRefGoogle Scholar
  9. 9.
    I. Daizadeh, E.S. Medvedev, A.A. Stuchebrukhov, Proc. Natl. Acad. Sci. USA 94, 3703 (1997)CrossRefGoogle Scholar
  10. 10.
    E.G. Petrov, V. May, J. Phys. Chem. A 105, 10176 (2001)CrossRefGoogle Scholar
  11. 11.
    E.G. Petrov, Ye.V. Shevchenko, V. May, J. Chem. Phys. 115, 7107 (2001) CrossRefGoogle Scholar
  12. 12.
    E.G. Petrov, Ya.R. Zelinskyy, V. May, J. Phys. Chem. B 106, 3092 (2002)CrossRefGoogle Scholar
  13. 13.
    E.G. Petrov, Ye.V. Shevchenko, V. May, Chem. Phys. 288, 269 (2003)CrossRefGoogle Scholar
  14. 14.
    S.S. Isied, M.Y. Ogawa, J.F. Wishart, Chem. Rev. 92, 381 (1992)Google Scholar
  15. 15.
    B. Mollay, H.F. Kauffmann, Chem. Phys. 177, 645 (1993)CrossRefGoogle Scholar
  16. 16.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)CrossRefGoogle Scholar
  17. 17.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992)Google Scholar
  18. 18.
    I.A. Goychuk, E.G. Petrov, V. May, J. Chem. Phys. 106, 4522 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Bogolyubov Institute for Theoretical PhysicsUkr. Natl. Acad. Sci.KievUkraine

Personalised recommendations