Observation of the long-range potential well of the \(\mathsf{(6)^1\Sigma^+_g(3s+5s)}\) state of Na\(\mathsf{_2}\)

  • T. Laue
  • P. Pellegrini
  • O. DulieuEmail author
  • C. Samuelis
  • H. Knöckel
  • F. Masnou-Seeuws
  • E. Tiemann


We report on the first observation of the outer well of the \((6)^1\Sigma^+_g\) state of Na2 molecule. The levels are populated in a molecular beam experiment with a three step laser excitation. The fact that these levels predissociate allows an almost background free detection by the appearance of atomic fluorescence. With this method almost all vibrational levels of the outer well are observed. The corresponding predissociation line widths show an oscillating behaviour. The theoretical description of the predissociation is presented in the framework of mapped Fourier grid Hamiltonian representation with optical potential, involving two coupled electronic states. Combining the spectroscopic information on energy positions and predissociation widths, a Rydberg-Klein-Rees potential curve is given for the outer well. Such a state could offer a reliable path for photoassociation of cold Na atoms and formation of ultracold Na2 molecules.


Line Width Molecular Beam Laser Excitation Oscillate Behaviour Theoretical Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Vergès, C. Effantin, J. d’Incan, D.L. Cooper, R.F. Barrow, Phys. Rev. Lett. 53, 46 (1984)CrossRefGoogle Scholar
  2. 2.
    A. Pashov, W. Jastrzebski, W. Jaśniecki, V. Bednarka, P. Kowalczyk, J. Mol. Spectrosc. 203, 264 (2000)CrossRefGoogle Scholar
  3. 3.
    W. Jastrzebski, W. Jaśniecki, P. Kowalczyk, R. Nadyak, A. Pashov, Phys. Rev. A 62, 042509 (2000)CrossRefGoogle Scholar
  4. 4.
    W. Jastrzebski, A. Pashov, P. Kowalczyk, J. Chem. Phys. 114, 10725 (2001)CrossRefGoogle Scholar
  5. 5.
    A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Phys. Rev. Lett. 80, 4402 (1998)CrossRefGoogle Scholar
  6. 6.
    P.D. Lett, K. Helmerson, W.D. Philips, L.P. Ratliff, S.L. Rolston, M.E. Wagshul, Phys. Rev. Lett. 71, 2200 (1993)CrossRefGoogle Scholar
  7. 7.
    F.K. Fatemi, K.M. Jones, P.D. Lett, E. Tiesinga, Phys. Rev. A 66, 053401 (2002)CrossRefGoogle Scholar
  8. 8.
    C. Gabbanini, A. Fioretti, A. Lucchesini, S. Gozzini, M. Mazzoni, Phys. Rev. Lett. 84, 2814 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Magnier, Ph. Millié, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993)CrossRefGoogle Scholar
  10. 10.
    C.-C. Tsai, J.T. Bahns, W.C. Stwalley, J. Mol. Spectrosc. 167, 429 (1994)CrossRefGoogle Scholar
  11. 11.
    M.-L. Almazor, O. Dulieu, M. Elbs, E. Tiemann, F. Masnou-Seeuws, Eur. Phys. J. D 5, 237 (1999)CrossRefGoogle Scholar
  12. 12.
    E. Tiemann, H. Knöckel, H. Richling, Z. Phys. D 37, 323 (1996)CrossRefGoogle Scholar
  13. 13.
    M. Elbs, T. Laue, H. Knöckel, E. Tiemann, Phys. Rev. A 59, 3665 (1999)CrossRefGoogle Scholar
  14. 14.
    H. Wang, private communication, 1998Google Scholar
  15. 15., Program IodineSpec (2001)Google Scholar
  16. 16.
    M. Vatasecu, O. Dulieu, C. Amiot, D. Comparat, C. Drag, V. Kokoouline, F. Masnou-Seeuws, P. Pillet, Phys. Rev. A 61, 044701 (2000)CrossRefGoogle Scholar
  17. 17.
    C. Samuelis, E. Tiesinga, T. Laue, M. Elbs, H. Knöckel, E. Tiemann, Phys. Rev. A 63, 012710 (2000)CrossRefGoogle Scholar
  18. 18.
    C.C. Martson, G.G. Balint-Kurti, J. Chem. Phys. 91, 3571 (1989)CrossRefGoogle Scholar
  19. 19.
    D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1892 (1992)CrossRefGoogle Scholar
  20. 20.
    M. Monnerville, J.M. Robbe, J. Chem. Phys. 101, 7580 (1994)CrossRefGoogle Scholar
  21. 21.
    O. Dulieu, P.S. Julienne, J. Chem. Phys. 103, 60 (1995)CrossRefGoogle Scholar
  22. 22.
    M. Monnerville, J.M. Robbe, Eur. Phys. J. D 5, 381 (1999)CrossRefGoogle Scholar
  23. 23.
    V. Kokoouline, O. Dulieu, R. Kosloff, F. Masnou-Seeuws, J. Chem. Phys. 110, 9865 (1999)CrossRefGoogle Scholar
  24. 24.
    V. Kokoouline, O. Dulieu, R. Kosloff, F. Masnou-Seeuws, Phys. Rev. A 62, 032716 (2000)CrossRefGoogle Scholar
  25. 25.
    G. Jolicard, E.J. Austin, Chem. Phys. Lett. 121, 106 (1985)CrossRefGoogle Scholar
  26. 26.
    E.J. Austin, G. Jolicard, Chem. Phys. 103, 295 (1986)CrossRefGoogle Scholar
  27. 27.
    C. Leforestier, E.J. Austin, G. Jolicard, J. Chem. Phys. 88, 1026 (1988)CrossRefGoogle Scholar
  28. 28.
    P. Pellegrini, O. Dulieu, F. Masnou-Seeuws, Eur. Phys. J. D 20, 77 (2002)CrossRefGoogle Scholar
  29. 29.
    S. Magnier, M. Aubert-Frécon, O. Bouty, F. Masnou-Seeuws, Ph. Millié, V.N. Ostrovskii, J. Phys. B 27, 1723 (1994)CrossRefGoogle Scholar
  30. 30.
    Kai Willner, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys. (in press)Google Scholar
  31. 31.
    M. Vatasescu, Ph.D. thesis, Université Paris-Sud, 1999Google Scholar
  32. 32.
    Á. Vibók, G.G. Balint-Kurti, J. Phys. Chem. 96, 8712 (1992)Google Scholar
  33. 33.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes (Cambridge University Press, 1992)Google Scholar
  34. 34.
    G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules (Van Nostrand Reinhold, 1950)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • T. Laue
    • 1
  • P. Pellegrini
    • 2
  • O. Dulieu
    • 2
    Email author
  • C. Samuelis
    • 1
  • H. Knöckel
    • 1
  • F. Masnou-Seeuws
    • 2
  • E. Tiemann
    • 1
  1. 1.Institut für QuantenoptikUniversität HannoverHannoverGermany
  2. 2.Laboratoire Aimé Cotton, CNRSOrsay CedexFrance

Personalised recommendations