Advertisement

Squeezing and entangling atomic motion in cavity QED via quantum nondemolition measurement

  • J. ZhangEmail author
  • K. Peng
Original Paper

Abstract.

We propose a scheme for preparing the squeezing of an atomic motion and an Einstein-Podolsky-Rosen state in position and momentum of a pair of distantly separated trapped atoms. The scheme utilizes the quantum nondemolition measurements with interaction between the cavity field and the motional state of the trapped atom in cavity QED. By illuminating the atoms with bichromatic light, the interaction Hamiltonian of the cross-Kerr effect between the cavity and atomic motion is generated to implement quantum nondemolition measurements.

Keywords

Motional State Atomic Motion Cavity Field Trap Atom Quantum Nondemolition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Vaidman, Phys. Rev. A 49, 1473 (1994)CrossRefGoogle Scholar
  2. 2.
    T.C. Ralph, Phys. Rev. A 61, 010303(R) (2000)CrossRefGoogle Scholar
  3. 3.
    M. Ban, J. Opt. B: Quant. Semiclass. Opt. 1, L9 (1999)Google Scholar
  4. 4.
    S. Lloyd, S.L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    E. Hagley, X. Mantre, G. Nogues, C. Wunderlich, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 79, 1 (1997)CrossRefGoogle Scholar
  6. 6.
    J.I. Cirac, P. Zoller, Phys. Rev. A 50, R2799 (1994)Google Scholar
  7. 7.
    D.M. Meekhof , Phys. Rev. Lett. 76, 1976 (1996)CrossRefGoogle Scholar
  8. 8.
    J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)CrossRefGoogle Scholar
  9. 9.
    A.S. Parkins, H.J. Kimble, J. Opt. B: Quant. Semiclass. Opt. 1, 496 (1999)CrossRefGoogle Scholar
  10. 10.
    A.S. Parkins, H.J. Kimble, Phys. Rev. A 61, 052104 (2000)CrossRefGoogle Scholar
  11. 11.
    A.S. Parkins, E. Larsabal, Phys. Rev. A 63, 012304 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Peng, A.S. Parkins, Phys. Rev. A 65, 062323 (2002)CrossRefGoogle Scholar
  13. 13.
    S. Mancini, S. Bose, Phys. Rev. A 64, 032308 (2001)CrossRefGoogle Scholar
  14. 14.
    L.-M. Duan , Phys. Rev. Lett. 85, 5643 (2000)CrossRefGoogle Scholar
  15. 15.
    A. Kuzmich , Phys. Rev. Lett. 85, 1594 (2000)CrossRefGoogle Scholar
  16. 16.
    H. Zeng, F. Lin, Phys. Rev. A 50, R3589 (1994)Google Scholar
  17. 17.
    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. Natl. Stand. Technol. 103, 259 (1998)Google Scholar
  18. 18.
    M. Murao, P.L. Knight, Phys. Rev. A 58, 663 (1998)CrossRefGoogle Scholar
  19. 19.
    P. Grangier, J.A. Levenson, J.P. Poizat, Nature 396, 537 (1998)CrossRefGoogle Scholar
  20. 20.
    D.W. Berry, B.C. Sanders, New J. Phys. 4, 8 (2002)Google Scholar
  21. 21.
    L.-M. Duan , Phys. Rev. Lett. 84, 4002 (2000)CrossRefGoogle Scholar
  22. 22.
    C.J. Hood , Science 287, 1447 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-ElectronicsShanxi UniversityTaiyuanP.R. China

Personalised recommendations