Advertisement

Photodissociation and photoionization of sodium coated C \(_\mathsf{60}\) clusters

  • M. PellarinEmail author
  • E. Cottancin
  • J. Lermé
  • J.L. Vialle
  • M. Broyer
  • F. Tournus
  • B. Masenelli
  • P. Mélinon
Original Paper

Abstract.

(C60) m Na n clusters are produced in a tandem laser vaporization source and analyzed by photoionization and photofragmentation time-of-flight mass spectroscopy. At low sodium coverage, the special behavior of (C60)m=1,2Na n clusters \((n\leq 6m)\) is consistent with a significant electron transfer from the first six adsorbed atoms towards each of the C60 fullerenes and an ionic-like bonding in this size range. However, the stability of the (C60)Na3+ cation is found much more pronounced than the one of (C60)Na7+ predicted to be a magic size under the hypothesis of a full charge transfer from the metal atoms to the C60 molecule. When more sodium atoms are present, metal-metal bonds tend to become preponderant and control the cluster properties. Relative to the number of sodium atoms, an odd-even alternation in their stability is explained by the high dissociation rates for even-numbered clusters. The even clusters evaporate neutral sodium atoms whereas odd ones prefer to evaporate Na2 molecules. The hypotheses for the growth of a sodium droplet that does not wet the fullerene surface or for the formation of a concentric metallic layer are discussed in the light of this study.

Keywords

Fullerene Sodium Atom Full Charge Neutral Sodium High Dissociation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fullerenes: Chemistry, Physics, and Technology, edited by K.M. Kadish, R.S. Ruoff (John Wiley & Sons Inc., NewYork, 2000) and references thereinGoogle Scholar
  2. 2.
    U. Zimmermann, N. Malinowski, A. Burkhardt, T.P. Martin, Carbon 33, 995 (1995)CrossRefGoogle Scholar
  3. 3.
    F. Tast, N. Malinowski, M. Heinebrodt, I.M.L. Billas, T.P. Martin, J. Chem. Phys. 106, 9372 (1997)CrossRefGoogle Scholar
  4. 4.
    U. Zimmermann, N. Malinowski, U. Näher, S. Franck, T.P. Martin, Phys. Rev. Lett. 72, 3542 (1994)CrossRefGoogle Scholar
  5. 5.
    M. Springborg, S. Satpathy, N. Malinowski, U. Zimmermann, T.P. Martin, Phys. Rev. Lett. 77, 1127 (1996)CrossRefGoogle Scholar
  6. 6.
    S. Frank, N. Malinowski, F. Tast, M. Heinebrodt, I.M.L. Billas, T.P. Martin, Z. Phys. D 40, 250 (1997)CrossRefGoogle Scholar
  7. 7.
    P. Mierzyński, K. Pomorski, Eur. Phys. J. D 21, 311 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Rubio, J.A. Alonso, J.M. López, M.J. Stott, Phys. Rev. B 49, 17397 (1994)CrossRefGoogle Scholar
  9. 9.
    P. Weis, R.D. Beck, G. Bräuchle, M.M. Kappes, J. Chem. Phys. 100, 5684 (1994)CrossRefGoogle Scholar
  10. 10.
    T.P. Martin, N. Malinowski, U. Zimmermann, U. Näher, H. Schaber, J. Chem. Phys. 99, 4210 (1993)CrossRefGoogle Scholar
  11. 11.
    D. Östling, A. Rosén, Chem. Phys. Lett. 281, 352 (1997)CrossRefGoogle Scholar
  12. 12.
    D. Östling, A. Rosén, Chem. Phys. Lett. 202, 389 (1993)CrossRefGoogle Scholar
  13. 13.
    U. Zimmermann, A. Burkhardt, N. Malinowski, U. Näher, T.P. Martin, J. Chem. Phys. 101, 2244 (1994)CrossRefGoogle Scholar
  14. 14.
    J. Kohanoff, W. Andreoni, M. Parinello, Chem. Phys. Lett. 198, 472 (1992)CrossRefGoogle Scholar
  15. 15.
    T. Aree, T. Kerdchaoren, S. Hannongbua, Chem. Phys. Lett. 285, 221 (1998)CrossRefGoogle Scholar
  16. 16.
    B. Palpant, A. Otake, F. Hayakawa, Y. Negishi, G.H. Lee, A. Nakajima, K. Kaya, Phys. Rev. B 60, 4509 (1999)CrossRefGoogle Scholar
  17. 17.
    B. Palpant, Y. Negishi, M. Sanetaka, K. Miyajima, S. Nagao, K. Judai, D.M. Rayner, B. Simard, P.A. Hackett, A. Nakajima, K. Kaya, J. Chem. Phys. 114, 8459 (2001)CrossRefGoogle Scholar
  18. 18.
    Ph. Dugourd, R. Antoine, D. Rayane, I. Compagnon, M. Broyer, J. Chem. Phys. 114, 1970 (2001)CrossRefGoogle Scholar
  19. 19.
    A.S. Hira, A.K. Ray, Phys. Rev. A 52, 141 (1995)CrossRefGoogle Scholar
  20. 20.
    A.S. Hira, A.K. Ray, Phys. Rev. A 54, 2205 (1996)CrossRefGoogle Scholar
  21. 21.
    N. Hamamoto, J. Jitsukawa, C. Satoko, Eur. Phys. J. D 19, 211 (2002)CrossRefGoogle Scholar
  22. 22.
    J. Roques, F. Calvo, F. Spiegelman, C. Mijoule, Phys. Rev. Lett. 90, 75505 (2003)CrossRefGoogle Scholar
  23. 23.
    M. Pellarin, C. Ray, J. Lermé, J.L. Vialle, M. Broyer, P. Melinon, J. Chem. Phys. 112, 8436 (2000)CrossRefGoogle Scholar
  24. 24.
    C. Ray, M. Pellarin, J. Lermé, J.L. Vialle, M. Broyer, X. Blase, P. Mélinon, P. Kéghélian, A. Perez, J. Chem. Phys. 110, 6927 (1999)CrossRefGoogle Scholar
  25. 25.
    C. Bréchignac, Ph. Cahuzac, N. Kebaï li, J. Leygnier, A. Sarfati, Phys. Rev. Lett. 68, 3916 (1992)CrossRefGoogle Scholar
  26. 26.
    M.L. Homer, J.L. Persson, E.C. Honea, R.L. Whetten, Z. Phys. D 22, 441 (1991)Google Scholar
  27. 27.
    M.M. Kappes, M. Schär, U. Röthlisberger, C. Yeretzian, E. Schumacher, Chem. Phys. Lett. 143, 251 (1988)CrossRefGoogle Scholar
  28. 28.
    V. Bonačić-Koutecký, P. Fantucci, J. Koutecký, Phys. Rev. B 37, 4369 (1988)CrossRefGoogle Scholar
  29. 29.
    S. Nagao, Y. Negishi, A. Kato, Y. Nakamura, A. Nakajima, K. Kaya, J. Chem. Phys. 117, 3169 (2002)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, J.M. Holden, X.X. Bi, P.C. Ecklund, Chem. Phys. Lett. 217, 413 (1994)CrossRefGoogle Scholar
  31. 31.
    M. Pellarin, E. Cottancin, J. Lermé, J.L. Vialle, M. Broyer, F. Tournus, B. Masenelli, P. Mélinon, J. Chem. Phys. 117, 3088 (2002)CrossRefGoogle Scholar
  32. 32.
    C. Bréchignac, Ph. Cahuzac, J.Ph. Roux, D. Pavolini, F. Spiegelmann, J. Chem. Phys. 87, 5694 (1987)CrossRefGoogle Scholar
  33. 33.
    C. Bréchignac, Ph. Cahuzac, J. Leygnier, J. Wiener, J. Chem. Phys. 90, 1492 (1989)CrossRefGoogle Scholar
  34. 34.
    V. Bonačić-Koutecký, I. Boustani, M. Guest, J. Koutecký, J. Chem. Phys. 89, 4861 (1988)CrossRefGoogle Scholar
  35. 35.
    D. Rayane, R. Antoine, Ph. Dugourd, E. Bénichou, A.R. Allouche, M. Aubert-Frécon, M. Broyer, Phys. Rev. Lett. 84, 1962 (1999)CrossRefGoogle Scholar
  36. 36.
    From different theoretical studies the distance from one adsorbed sodium atom to the fullerene surface is estimated about 2--2.5 Å [x]. This value is larger or of the order of the surface to surface distance between two fullerenes involved in a [2+2] cycloaddition linkGoogle Scholar
  37. 37.
    M.L. Cohen, M.Y. Chou, W.D. Knight, W.A. de Heer, J. Chem. Phys. 91, 3141 (1987)Google Scholar
  38. 38.
    I. Compagnon, R. Antoine, D. Rayane, M. Broyer, Ph. Dugourd, Phys. Rev. Lett. 89, 253001 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • M. Pellarin
    • 1
    Email author
  • E. Cottancin
    • 1
  • J. Lermé
    • 1
  • J.L. Vialle
    • 1
  • M. Broyer
    • 1
  • F. Tournus
    • 2
  • B. Masenelli
    • 2
  • P. Mélinon
    • 2
  1. 1.Laboratoire de Spectrométrie Ionique et Moléculaire (UMR 5579 du CNRS)Villeurbanne CedexFrance
  2. 2.Laboratoire de Physique de la Matiére Condensée et Nanostructures (UMR 5586 du CNRS)Villeurbanne CedexFrance

Personalised recommendations