Advertisement

Prospects for forbidden-transition spectroscopy and parity violation measurements using a beam of cold stable or radioactive atoms

  • S. Sanguinetti
  • J. Guéna
  • M. Lintz
  • Ph. Jacquier
  • A. Wasan
  • M.-A. Bouchiat
Original Paper

Abstract.

Laser cooling and trapping offers the possibility of confining a sample of radioactive atoms in free space. Here, we address the question of how best to take advantage of cold atom properties to perform the observation of as highly forbidden a line as the 6S-7S Cs transition for achieving, in the longer term, atomic parity violation (APV) measurements in radioactive alkali isotopes. Another point at issue is whether one might do better with stable, cold atoms than with thermal atoms. To compensate for the large drawback of the small number of atoms available in a trap, one must take advantage of their low velocity. To lengthen the time of interaction with the excitation laser, we suggest choosing a geometry where the laser beam exciting the transition is colinear to a slow, cold atomic beam, either extracted from a trap or prepared by Zeeman slowing. We also suggest a new observable physical quantity manifesting APV, which presents several advantages: specificity, efficiency of detection, possibility of direct calibration by a parity conserving quantity of a similar nature. It is well adapted to a configuration where the cold atomic beam passes through two regions of transverse, crossed electric fields, leading both to differential measurements and to strong reduction of the contributions from the M1-Stark interference signals, potential sources of systematics in APV measurements. Our evaluation of signal-to-noise ratios shows that with available techniques, measurements of transition amplitudes, important as required tests of atomic theory, should be possible in 133Cs with a statistical precision of 10-3 and probably also in Fr isotopes for production rates of \(\gtrsim 10^6\) Fr atoms s-1. For APV measurements to become realistic, some practical realization of the collimation of the atomic beam as well as multiple passages of the excitation beam matching the atomic beam looks essential.

Keywords

Atomic Beam Cold Atom Laser Cool Multiple Passage Excitation Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Bouchiat, C. Bouchiat, J. Phys. France 35, 899 (1974)Google Scholar
  2. 2.
    C.S. Wood , Science 275, 1759 (1997)CrossRefGoogle Scholar
  3. 3.
    S.C. Bennett, C.E. Wieman, Phys. Rev. Lett. 82, 2484 (1999)CrossRefGoogle Scholar
  4. 4.
    V.A. Dzuba, V.V. Flambaum, O.P. Sushkov, Phys. Lett. A 141, 147 (1989)CrossRefGoogle Scholar
  5. 5.
    A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)CrossRefGoogle Scholar
  6. 6.
    A.I. Milstein, O.P. Sushkov, I.S. Terekhov, Phys. Rev. Lett. 89, 283003 (2002)CrossRefGoogle Scholar
  7. 7.
    V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. D 66, 076013 (2002)CrossRefGoogle Scholar
  8. 8.
    D. DeMille, Phys. Rev. Lett. 74, 4165 (1995)CrossRefGoogle Scholar
  9. 9.
    A.-T. Nguyen, D.E. Brown, D. Budker, D. DeMille, D.F. Kimball, M. Zolotorev, in Parity Violation in Atoms and Electron Scattering, edited by B. Frois, M.A. Bouchiat (World Scientific, 1999), p. 295Google Scholar
  10. 10.
    V.A. Dzuba, V.V. Flambaum, O.P. Sushkov, Phys. Rev. A 51, 3454 (1995)CrossRefGoogle Scholar
  11. 11.
    Y.B. Zel'dovich, Sov. Phys. JETP 6, 1184 (1957)Google Scholar
  12. 12.
    I.M. Savukov, A. Derevianko, H.G. Berry, W.R. Johnson, Phys. Rev. Lett. 83, 2914 (1999)CrossRefGoogle Scholar
  13. 13.
    H.J. Metcalf, P. van der Straten, in Laser cooling and trapping of atoms (Springer, New-York, 1999)Google Scholar
  14. 14.
    S.N. Atutov , Phys. Rev. A 60, 4693 (1999)CrossRefGoogle Scholar
  15. 15.
    Z.-T. Lu , Phys. Rev. Lett. 72, 3791 (1994)CrossRefGoogle Scholar
  16. 16.
    J.A. Behr , Phys. Rev. Lett. 79, 375 (1997)CrossRefGoogle Scholar
  17. 17.
    G. Gwinner , Phys. Rev. Lett. 72, 3795 (1994)CrossRefGoogle Scholar
  18. 18.
    M.D. Di-Rosa, S.G. Crane, J.J. Kitten, W.A. Taylor, D. Vieira, X. Zhao, SPIE-Int. Soc. Opt. Eng. 34-45, 4634 (2002)Google Scholar
  19. 19.
    J.E. Simsarian , Phys. Rev. Lett. 76, 3522 (1996)CrossRefGoogle Scholar
  20. 20.
    Z.-T. Lu , Phys. Rev. Lett. 79, 994 (1997)CrossRefGoogle Scholar
  21. 21.
    J.S. Grossman, L.A. Orozco, M.R. Pearson, G.D. Sprouse, Phys. Scripta TIE1, 1 (2000)Google Scholar
  22. 22.
    M.A. Bouchiat, J. Guéna, J. Phys. France 49, 2037 (1988)Google Scholar
  23. 23.
    W.R. Johnson, Phys. Rev. A 60, R1741 (1999)Google Scholar
  24. 24.
    A.A. Vasilyev, I.M. Savukov, M.S. Safronova, H.G. Berry, Phys. Rev. A 66, 020101 (2002)CrossRefGoogle Scholar
  25. 25.
    R. Casalbuoni , Phys. Lett. B 460, 135 (1999)CrossRefGoogle Scholar
  26. 26.
    J.E. Simsarian, W.Z. Zhao, L.A. Orozco, G.D. Sprouse, Phys. Rev. A 59, 195 (1999)CrossRefGoogle Scholar
  27. 27.
    See for example: S. Chu, Rev. Mod. Phys. 70, 685 (1998)CrossRefGoogle Scholar
  28. 28.
    K.I. Lee, J.A. Kim, H.R. Noh, W. Jhe, Opt. Lett. 21, 1177 (1996)Google Scholar
  29. 29.
    J.J. Arlt , Opt. Commun. 157, 303 (1998)CrossRefGoogle Scholar
  30. 30.
    A. Camposeo , Opt. Commun. 200, 231 (2001)CrossRefGoogle Scholar
  31. 31.
    M.A. Bouchiat, J. Guéna, L. Pottier, J. Phys. Lett. 45, 523 (1984)Google Scholar
  32. 32.
    E. Biémont, P. Quinet, V. van Renterghem, J. Phys. B 31, 5301 (1998)Google Scholar
  33. 33.
    H. Chen, E. Riis, Appl. Phys. B 70, 665 (2000)CrossRefGoogle Scholar
  34. 34.
    P. Cren, C.F. Roos, A. Aclan, J. Dalibard, D. Guéry-Odelin, Eur. Phys. J. D 20, 107 (2002)CrossRefGoogle Scholar
  35. 35.
    K. Dieckmann, R.J.C. Spreeuw, M. Weidem\" uller, J.T.M. Walraven, Phys. Rev. A 58, 3891 (1998)CrossRefGoogle Scholar
  36. 36.
    T.B. Swanson, N.J. Silva, S.K. Mayer, J.J. Maki, D.H. McIntyre, J. Opt. Soc. Am. B 13, 1833 (1996)Google Scholar
  37. 37.
    J. Schoser , Phys. Rev. A 66, 023410 (2002)CrossRefGoogle Scholar
  38. 38.
    F. Lison, P. Schuh, D. Haubrich, D. Meschede, Phys. Rev. A 61, 013405 (1999)CrossRefGoogle Scholar
  39. 39.
    Z.T. Lu , Phys. Rev. Lett. 77, 3331 (1996)CrossRefGoogle Scholar
  40. 40.
    J. Guéna , Phys. Rev. Lett. 90, 143001 (2003)CrossRefGoogle Scholar
  41. 41.
    M.A. Bouchiat, C. Bouchiat, J. Phys. France 36, 493 (1975)Google Scholar
  42. 42.
    C.S. Wood , Can. J. Phys. 77, 7 (1999)CrossRefGoogle Scholar
  43. 43.
    D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964)Google Scholar
  44. 44.
    M.A. Bouchiat, J. Guéna, L. Hunter, L. Pottier, Phys. Lett. B 117, 358 (1982)CrossRefGoogle Scholar
  45. 45.
    D. Chauvat , J. Guéna, Ph. Jacquier, M. Lintz, M.A. Bouchiat, Eur. Phys. J. D 1, 169 (1998)CrossRefGoogle Scholar
  46. 46.
    V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A 63, 062101 (2001)CrossRefGoogle Scholar
  47. 47.
    M.A. Bouchiat, L. Pottier, in Proceedings of the International Workshop on Neutral Current Interactions in Atoms, edited by W.L. Williams, M.A. Bouchiat (Univ. of Michigan Press, Ann Arbor, 1979), p. 122Google Scholar
  48. 48.
    M.A. Bouchiat, M. Poirier, C. Bouchiat, J. Phys. France 40, 1127 (1979)Google Scholar
  49. 49.
    S.L. Gilbert, C.E. Wieman, Phys. Rev. A 34, 792 (1986)CrossRefGoogle Scholar
  50. 50.
    M.A. Bouchiat, Ph. Jacquier, M. Lintz, L. Pottier, Opt. Commun. 56, 100 (1985)CrossRefGoogle Scholar
  51. 51.
    M.A. Bouchiat, L. Pottier, Opt. Commun. 37, 229 (1981)CrossRefGoogle Scholar
  52. 52.
    F. Touchard , Nucl. Instrum. Meth. 186, 329 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • S. Sanguinetti
    • 1
  • J. Guéna
    • 1
  • M. Lintz
    • 1
  • Ph. Jacquier
    • 1
  • A. Wasan
    • 1
  • M.-A. Bouchiat
    • 1
  1. 1.Laboratoire Kastler Brossel (Laboratoire de l'École Normale Supérieure associé au CNRS (UMR 8552) et á l'Université Pierre et Marie Curie.), Département de Physique de l'École Normale SupérieureParis Cedex 05France

Personalised recommendations