Axial variation of electron number density in thermal plasma spray jets

  • N. K. JoshiEmail author
  • S. N. Sahasrabudhe
  • K. P. Sreekumar
  • N. Venkatramani


The electron number density has been measured in a plasma spray torch using Stark broadening of H\(_{\beta}\) and Ar-I (430 nm) line. A small amount of hydrogen (1% by volume in argon gas) was introduced to study the H\(_{\beta}\) line profile. Axial variation of electron number density has been determined up to a distance of 20 mm from the nozzle exit point of spray torch. The plasma torch was operated at 5 and 10 kW power level and flow of argon was kept at 25 liters per minute. Using the measured excitation temperature data under same experimental conditions, the electron number density has also been calculated using Saha equation. Comparison of electron number densities measured from Stark broadening with those derived from excitation temperature measurements under the assumption of local thermodynamic equilibrium (LTE) in thermal plasma jets indicate about the deviation from LTE in thermal plasma jets. The electron number density measurement using Stark broadening of Ar-I (430 nm) line will be particularly useful when only argon gas is used in thermal plasma jets.


Line Profile Nozzle Exit Plasma Spray Plasma Torch Thermal Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Fauchis, J.F. Coudert, M. Vardelle, Plasma diagnostics, Discharge parameters and chemistry, edited by O. Auiciello, D.L. Famm (Academic Press, 1989), Vol. 1Google Scholar
  2. 2.
    E. Pfender, Thin Solid Films 238, 228 (1994)CrossRefGoogle Scholar
  3. 3.
    W.L.T. Chen, J. Herberlin, E. Pfender, Plasma Chem. Plasma Proc. 14, 317 (1994)zbMATHGoogle Scholar
  4. 4.
    H.R. Griem, Plasma Spectroscopy (Academic Press, 1964)Google Scholar
  5. 5.
    C.R. Vidal, J. Cooper, F.W. Smith, Astrophys. J. Supl. Ser. 25, 37 (1973)CrossRefGoogle Scholar
  6. 6.
    M.A. Gigosos, V. Cardenoso, J. Phys. B: At. Mol. Opt. Phys. 29, 4795 (1996)CrossRefGoogle Scholar
  7. 7.
    V. Bakshi, R.J. Kearney, JQSRT 42, 405 (1989)CrossRefGoogle Scholar
  8. 8.
    V. Bakshi, R.J. Kearney, JQSRT 41, 369 (1989) CrossRefGoogle Scholar
  9. 9.
    N. Singh, M. Razafinimanana, A. Gleizes, J. Phys. D: Appl. Phys. 31, 2921 (1998)CrossRefGoogle Scholar
  10. 10.
    S.C. Synder, L.D. Reynolds, J.R. Fincke, G.D. Lassahn, J.D. Grandy T.E. Repetti, Phys. Rev. E 50, 319 (1994)Google Scholar
  11. 11.
    H.J. Kim, S.H. Hong, IEEE Trans. Plasma Sci. 23, 852 (1995)CrossRefGoogle Scholar
  12. 12.
    N.K. Joshi, S.N. Sahasrabudhe, K.P. Sreekumar, N. Venkatramani, Meas. Sci. Tech. 8, 1146 (1997)CrossRefGoogle Scholar
  13. 13.
    N. Konjevic, J.R. Roberts, J. Phys. Chem. Ref. Data 5, 209 (1996)Google Scholar
  14. 14.
    N. Konjevic, Phys. Rep. 316, 339 (1999)CrossRefGoogle Scholar
  15. 15.
    A.A. Ovsyannikov, Thermal Plasma and New Material Technology, edited by O.P. Solonenko, M.F. Zhukov (Cambridge Inter science Publisher, 1995), Vol. 2Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • N. K. Joshi
    • 1
    Email author
  • S. N. Sahasrabudhe
    • 1
  • K. P. Sreekumar
    • 1
  • N. Venkatramani
    • 1
  1. 1.Laser and Plasma Technology Division, B.A.R.C.MumbaiIndia

Personalised recommendations