Advertisement

Orientation of polar molecules with combined electrostatic and pulsed, nonresonant laser fields

  • Hirofumi SakaiEmail author
  • Shinichirou Minemoto
  • Hiroshi Nanjo
  • Haruka Tanji
  • Takayuki Suzuki
OriginalPaper

Abstract.

We show that molecules with a moderate permanent dipole moment can be oriented with combined electrostatic and pulsed, nonresonant laser fields. Carbonyl sulfide (OCS) molecules are used as a sample. The degree of orientation can be increased by increasing the peak intensity of the laser field and the magnitude of electrostatic field or by decreasing the initial rotational temperature of the molecules.

Keywords

Sulfide Carbonyl Dipole Moment Electrostatic Field Laser Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Phys. Chem. A 101(41), (1997), special issue on Stereodynamics of Chemical ReactionsGoogle Scholar
  2. 2.
    H. Sakai, C.P. Safvan, J.J. Larsen, K.M. Hilligsøe, K. Hald, H. Stapelfeldt, J. Chem. Phys. 110, 10235 (1999)CrossRefGoogle Scholar
  3. 3.
    J.J. Larsen, H. Sakai, C.P. Safvan, I. Wendt-Larsen, H. Stapelfeldt, J. Chem. Phys. 111, 7774 (1999)CrossRefGoogle Scholar
  4. 4.
    M.J. Vrakking, S. Stolte, Chem. Phys. Lett. 271, 209 (1997)CrossRefGoogle Scholar
  5. 5.
    C.M. Dion, A.D. Bandrauk, O. Atabek, A. Keller, H. Umeda, Y. Fujimura, Chem. Phys. Lett. 302, 215 (1999)CrossRefGoogle Scholar
  6. 6.
    T. Kanai, H. Sakai, J. Chem. Phys. 115, 5492 (2001)CrossRefGoogle Scholar
  7. 7.
    S. Guérin, L.P. Yatsenko, H.R. Jauslin, O. Faucher, B. Lavorel, Phys. Rev. Lett. 88, 233601 (2002)CrossRefGoogle Scholar
  8. 8.
    B. Friedrich, D. Herschbach, J. Chem. Phys. 111, 6157 (1999)CrossRefGoogle Scholar
  9. 9.
    B. Friedrich, D. Herschbach, J. Phys. Chem. A 103, 10280 (1999)CrossRefGoogle Scholar
  10. 10.
    R. Baumfalk, N.H. Nahler, U. Buck, J. Chem. Phys. 114, 4755 (2001)CrossRefGoogle Scholar
  11. 11.
    The orientation cosine is the expectation value of the quantity characterizing the degree of orientation: \(\langle\cos\theta_{\rm s}\rangle<Emphasis Type="Italic">where</Emphasis>\theta_{\rm s}\) is the angle between the molecular axis and the direction of the electrostatic field. They present the calculated values of \(\langle\cos\theta_{\rm s}\rangle = 0.78\) and 0.48 for HKrI and HXeBr, respectively, in reference [10]Google Scholar
  12. 12.
    A.A. Radzig, B.M. Smirnov, Reference data on atoms, molecules, and ions (Springer-Verlag, Berlin, Heidelberg, 1985)Google Scholar
  13. 13.
    T. Seideman, M.Yu. Ivanov, P.B. Corkum, Phys. Rev. Lett. 75, 2819 (1995)CrossRefGoogle Scholar
  14. 14.
    T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, R2511 (1995)Google Scholar
  15. 15.
    E. Constant, H. Stapelfeldt, P.B. Corkum, Phys. Rev. Lett. 76, 4140 (1996)CrossRefGoogle Scholar
  16. 16.
    We note that the observation of S\(^+\) ions is hampered by the strong ringing of OCS\(^{2+}\) ions and the mass/charge of S\(^{2+}\) ions is the same as that of O\(^+\) ions. We experimentally findthat the production yield of S\(^{2+}\) fragments is much higher than that of O\(^+\) fragments regardless of the difference of their charge states. This should be convinced by comparing the signal magnitude of S\(^{3+}\) with that of O\(^{2+}\). Therefore, the asymmetry observed at the position of S\(^{2 + }\) (O\(^+\)) is mainly due to the S\(^{2+}\) fragments and consistent with our interpretation which is discussed below. Still, we cannot use the S\(^{2 +}\) signal as a measure of orientation because the O\(^+\) signal is also included in thereGoogle Scholar
  17. 17.
    L. Cai, J. Marango, B. Friedrich, Phys. Rev. Lett. 86, 775 (2001)CrossRefGoogle Scholar
  18. 18.
    Ch. Ellert, P.B. Corkum, Phys. Rev. A 59, R3170 (1999)Google Scholar
  19. 19.
    P. Wallraff, K.M.T. Yamada, G. Winnewisser, Z. Naturforsch. 42a, 246 (1987)Google Scholar
  20. 20.
    H. Stapelfeldt, E. Constant, H. Sakai, P.B. Corkum, Phys. Rev. A 58, 426 (1998)CrossRefGoogle Scholar
  21. 21.
    Ch. Ellert, H. Stapelfeldt, E. Constant, H. Sakai, J. Wright, D.M. Rayner, P.B. Corkum, Phil. Trans. R. Soc. Lond. A 356, 329 (1998)CrossRefGoogle Scholar
  22. 22.
    H. Sakai, S. Minemoto, H. Nanjo, H. Tanji, T. Suzuki, Phys. Rev. Lett. 90, 083001 (2003)CrossRefGoogle Scholar
  23. 23.
    J.J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. 85, 2470 (2000)CrossRefGoogle Scholar
  24. 24.
    H. Tanji, S. Minemoto, Y. Nomura, T. Suzuki, H. Sakai, in preparation. A part of the results was presented at the 9th International Conference on Multiphoton Processes (ICOMP IX) in October 2002 at Elounda, Crete, GreeceGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • Hirofumi Sakai
    • 1
    Email author
  • Shinichirou Minemoto
    • 1
  • Hiroshi Nanjo
    • 1
  • Haruka Tanji
    • 1
  • Takayuki Suzuki
    • 1
  1. 1.Department of Physics, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations