Advertisement

SASE free electron lasers as short wavelength coherent sources

From first results at 100 nm to a 1 Å X-ray laser
  • R. TreuschEmail author
  • J. Feldhaus
OriginalPaper

Abstract.

During the last few years free electron lasers (FELs) based on self-amplified spontaneous emission (SASE) have been demonstrated at wavelengths of 12 μm [1], 830 nm [2], 530 nm [3] and 385 nm [3], and around 100 nm [4]. Recently, saturation has been observed in the vacuum ultraviolet (VUV) spectral region between 82 nm and 125 nm at the TESLA Test Facility (TTF) at DESY. The radiation pulses have been characterized with respect to pulse energy, statistical fluctuations, angular divergence and spectral distribution, both in the linear gain and in the saturation regime of the FEL [5-6]. The results are in good agreement with theoretical simulations, providing a solid basis for other projects aiming at still shorter wavelengths down to the 0.1 nm range [7-8].

Keywords

Radiation Spectral Region Pulse Energy Short Wavelength Free Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Hogan , Phys. Rev. Lett. 81, 4867 (1998)CrossRefGoogle Scholar
  2. 2.
    A. Tremaine , Nucl. Instrum. Meth. A 483, 24 (2002)CrossRefGoogle Scholar
  3. 3.
    S.V. Milton , Science 292, 2037 (2001)CrossRefGoogle Scholar
  4. 4.
    J. Andruszkow , Phys. Rev. Lett. 85, 3825 (2000)CrossRefGoogle Scholar
  5. 5.
    V. Ayvazyan , Phys. Rev. Lett. 88, 104802 (2002)CrossRefGoogle Scholar
  6. 6.
    V. Ayvazyan , Eur. Phys. J. D 20, 149 (2002)Google Scholar
  7. 7.
    M. Cornacchia , Linac Coherent Light Source (LCLS) design study report, SLAC-R-521 (1998)Google Scholar
  8. 8.
    TESLA Technical Design Report, Part V: The X-Ray Free Electron Laser, edited by G. Materlik, Th. Tschentscher, DESY 2001-011 available at http://tesla.desy.de/new\_pages/TDR\_CD/PartV/fel.html and http://tesla.desy.de/new\_pages/tdr\_update/start.htmlGoogle Scholar
  9. 9.
    E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free Electron Lasers (Springer, Berlin, 1999) and references thereinGoogle Scholar
  10. 10.
    V. Ayvazyan , Study of the statistical properties of the radiation from a VUV SASE FEL operating in the femtosecond regime, Proceedings of the 24th International Free Electron Laser Conference (FEL 2002), Argonne, IL, USA, September 2002, to be published in Nucl. Instrum. Meth. AGoogle Scholar
  11. 11.
    R. Ischebeck , Study of the Transverse Coherence at the TTF Free Electron Laser, Proceedings of the 24th International Free Electron Laser Conference (FEL 2002), Argonne, IL, USA, September 2002, to be published in Nucl. Instrum. Meth. A Google Scholar
  12. 12.
    H. Wabnitz , Nature 420, 482 (2002)CrossRefGoogle Scholar
  13. 13.
    A. Andrejczuk , HASYLAB Ann. Rep. 1, 117 (2001), available at http://www-hasylab.desy.de/science/annual\_reports/2001\_reportGoogle Scholar
  14. 14.
    http://www-hasylab.desy.de/facility/fel/vuv/projects/Google Scholar
  15. 15.
    http://www-hasylab.desy.de/facility/felGoogle Scholar
  16. 16.
    TESLA Technical Design Report, DESY 2001-011/ECFA 2001-209 (2001) and http://tesla.desy.deGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Hamburger Synchrotronstrahlungslabor HASYLABDeutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations