Alignment of molecules by strong laser pulses

  • H. StapelfeldtEmail author


We review how moderately intense laser fields offer an approach to alignment of molecules [1]. In particular, molecules can be aligned along a given space fixed axis, forced to a plane, or their rotations about all three possible axes can be eliminated by choosing a linearly polarized, a circularly polarized, or an elliptically polarized alignment field, respectively. We show how molecules in the gas phase can be aligned by turning on the laser field either slowly (a few nanoseconds) or fast (a few picoseconds) with respect to the rotational period of the molecules. The role of the intensity of the laser field and the rotational temperature of the molecules is discussed. Before concluding we describe how aligned molecules enables control and selectivity in the interaction between polarized light and molecules.


Laser Pulse Rotational Period Laser Field Intense Laser Rotational Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    This paper is a summary of an invited lecture presented at the 9th International Conference On Multiphoton Processes at Elounda, Crete, October 18-23 (2002)Google Scholar
  2. 2.
    B. Friedrich, D. Herschbach, Phys. Chem. Chem. Phys. 2, 419 (2000)CrossRefGoogle Scholar
  3. 3.
    P. Bernath, Spectra of Atoms and Molecules (Oxford University Press, New York, 1995)Google Scholar
  4. 4.
    B.A. Zon, B.G. Katsnel’son, Sov. Phys.-JETP 42, 595 (1976)Google Scholar
  5. 5.
    T. Seideman, J. Chem. Phys. 103, 7887 (1995)CrossRefGoogle Scholar
  6. 6.
    B. Friedrich, D.R. Herschbach, Phys. Rev. Lett. 74, 4623 (1995)CrossRefGoogle Scholar
  7. 7.
    Due to space limitation the theory of molecular alignment is not discussed here. We refer the interested reader to references [5,6,14-18]Google Scholar
  8. 8.
    W. Kim, P.M. Felker, J. Chem. Phys. 104, 1147 (1996)CrossRefGoogle Scholar
  9. 9.
    H. Sakai , J. Chem. Phys. 110, 10235 (1998)CrossRefGoogle Scholar
  10. 10.
    J.J. Larsen, H. Sakai, C.P. Safvan, I. Wendt-Larsen, H. Stapelfeldt, J. Chem. Phys. 111, 7774 (1999)CrossRefGoogle Scholar
  11. 11.
    W. Kim, P.M. Felker, J. Chem. Phys. 107, 2193 (1997)CrossRefGoogle Scholar
  12. 12.
    J.J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. 85, 2470 (2000)CrossRefGoogle Scholar
  13. 13.
    Several groups have reported calculations on nonadiabatic alignment some of them are references [14-18]Google Scholar
  14. 14.
    J. Ortigoso, M. Rodriguez, M. Gupta, B. Friedrich, J. Chem. Phys. 110, 3870 (1999)CrossRefGoogle Scholar
  15. 15.
    T. Seideman, Phys. Rev. Lett. 83, 4971 (1999)CrossRefGoogle Scholar
  16. 16.
    C.M. Dion, A. Keller, O. Atabek, A.D. Bandrauk, Phys. Rev. A 59, 1382 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Machholm, J. Chem. Phys. 115, 10724 (2001)CrossRefGoogle Scholar
  18. 18.
    N.E. Henriksen, Chem. Phys. Lett. 312, 196 (1999)CrossRefGoogle Scholar
  19. 19.
    F. Rosca-Pruna, M.J.J. Vrakking, J. Chem. Phys. 116, 6567 (2002)CrossRefGoogle Scholar
  20. 20.
    E. Peronne, M.D. Poulsen, C.Z. Bisgaard, H. Stapelfeldt, T. Seideman, Phys. Rev. Lett. (submitted)Google Scholar
  21. 21.
    J.J. Larsen, I. Wendt-Larsen, H. Stapelfeldt, Phys. Rev. Lett. 83, 1123 (1999)CrossRefGoogle Scholar
  22. 22.
    M.D. Poulsen, E. Skovsen, H. Stapelfeldt, J. Chem. Phys. 117, 2097 (2002)CrossRefGoogle Scholar
  23. 23.
    T. Seideman, M.Yu. Ivanov, P.B. Corkum, Phys. Rev. Lett. 75, 2819 (1995)CrossRefGoogle Scholar
  24. 24.
    T. Seideman, M.Yu. Ivanov, P.B. Corkum, Chem. Phys. Lett. 252, 181 (1996)CrossRefGoogle Scholar
  25. 25.
    J.H. Posthumus, A.J. Giles, M.R. Thompson, K. Codling, J. Phys. B 28, L349 (1995)Google Scholar
  26. 26.
    T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, 2511 (1995)CrossRefGoogle Scholar
  27. 27.
    The radial distribution is obtained by an angular integration of the 2-dimensional I\(^{2+}\) ion image. It is proportional to the projection of the ion velocity on the detector, which in term, is very close to the full ion velocity because the alignment of the molecules causes the ions to be ejected in the plane of the detectorGoogle Scholar
  28. 28.
    ICl was seeded in 1 bar of helium and \(I_{\rm YAG} = 6 \times 10^{11}\) W/cm\(^2\) Google Scholar
  29. 29.
    C.M. Dion , Phys. Rev. A 65, 063408 (2002)CrossRefGoogle Scholar
  30. 30.
    K. Hoki, Y. Fujimura, Chem. Phys. 267, 187 (2002)CrossRefGoogle Scholar
  31. 31.
    V.R. Bhardwaj, D.M. Rayner, D.M. Villeneuve, P.B. Corkum, Phys. Rev. Lett. 87, 253003 (2001)Google Scholar
  32. 32.
    R. Velotta, N. Hay, M.B. Mason, M. Castillejo, J.P. Marangos, Phys. Rev. Lett. 87, 183901 (2001)Google Scholar
  33. 33.
    T. Seideman, Annu. Rev. Phys. Chem. 53, 41 (2002)CrossRefGoogle Scholar
  34. 34.
    R.A. Bartels , Phys. Rev. Lett. 88, 013903 (2002)CrossRefGoogle Scholar
  35. 35.
    V. Kalosha, M. Spanner, J. Herrmann, M. Ivanov, Phys. Rev. Lett. 88, 103901 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ÅrhusÅrhus CDenmark

Personalised recommendations