Probing electron-electron correlation with attosecond pulses

  • B. PirauxEmail author
  • J. Bauer
  • S. Laulan
  • H. Bachau


We study two-photon double ionization of helium in its ground state at sufficiently low laser intensities so that three and more photon absorptions are negligible. In the regime where sequential ionization dominates, the two-photon double ionization one-electron energy spectrum exhibits a well defined double peak structure directly related to the electron-electron correlation in the ground state. We demonstrate that when helium is exposed to subfemtosecond or attosecond pulses, both peaks move and their displacement is a signature of the time needed by the He+ orbital to relax after the ejection of the first electron. This result rests on the numerical solution of the corresponding non-relativistic time-dependent Schrödinger equation.


Helium Energy Spectrum Laser Intensity Double Peak Photon Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.W. Hänsch, Opt. Commun. 80, 71 (1990)CrossRefGoogle Scholar
  2. 2.
    Gy. Farkas, Cs. Tosh, Phys. Lett. A 168, 447 (1992)CrossRefGoogle Scholar
  3. 3.
    A.E. Kaplan, Phys. Rev. Lett. 73, 1243 (1994)CrossRefGoogle Scholar
  4. 4.
    P.B. Corkum, Nature 384, 118 (1996)CrossRefGoogle Scholar
  5. 5.
    P. Antoine, A. L’Huillier, M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996)CrossRefGoogle Scholar
  6. 6.
    S.E. Harris, A.V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998)CrossRefGoogle Scholar
  7. 7.
    P.B. Corkum, N.H. Burnett, M.Y. Ivanov, Opt. Lett. 19, 1870 (1994)Google Scholar
  8. 8.
    I.P. Christov, M.M. Murname, H.C. Kapteyn, Phys. Rev. Lett. 78, 1251 (1997)CrossRefGoogle Scholar
  9. 9.
    N.A. Papadogiannis, B. Witzel, C. Kalpouzous, D. Charalambidis, Phys. Rev. Lett. 83, 4289 (1999)CrossRefGoogle Scholar
  10. 10.
    Th. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)CrossRefGoogle Scholar
  11. 11.
    M. Hentschel, R. Kienberger, Ch. Spielmann, G.A. Reider, N. Milosevic, Th. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)CrossRefGoogle Scholar
  12. 12.
    P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H.G. Muller, P. Agostini, Science 292, 1689 (2001)CrossRefGoogle Scholar
  13. 13.
    H. Bachau, P. Lambropoulos, Phys. Rev. A 44, R9 (1991)Google Scholar
  14. 14.
    S. Laulan, H. Bachau, B. Piraux, J. Bauer, G. Lagmago Kamta, J. Mod. Opt. (in press)Google Scholar
  15. 15.
    L.A.A. Nikolopoulos, T. Nakajima, P. Lambropoulos, Eur. Phys. J. D 20, 297 (2002)CrossRefGoogle Scholar
  16. 16.
    M. Rotenberg, Adv. At. Mol. Phys. 6, 233 (1970)Google Scholar
  17. 17.
    C. de Boor, A practical guide to splines (Springer-Verlag, New-York, 1978)Google Scholar
  18. 18.
    R. Courant, D. Hilbert, Methods of Mathematical Physics (Interscience Publishers, New-York, London, 1953), p. 291Google Scholar
  19. 19.
    H.A. Yamani, W.P. Reinhardt, Phys. Rev. A 11, 1144 (1975)CrossRefGoogle Scholar
  20. 20.
    E. Huens, B. Piraux, A. Bugacov, M. Gajda, Phys. Rev. A 55, 2132 (1997)CrossRefGoogle Scholar
  21. 21.
    G. Lagmago Kamta, B. Piraux, A. Scrinzi, Phys. Rev. A 63, 040502(R) (2001)CrossRefGoogle Scholar
  22. 22.
    G. Lagmago Kamta, Th. Grosges, B. Piraux, R. Hasbani, E. Cormier, H. Bachau, J. Phys. B: At. Mol. Opt. Phys. 34, 857 (2001)CrossRefGoogle Scholar
  23. 23.
    H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martín, Rep. Prog. Phys. 64, 1815 (2001)CrossRefGoogle Scholar
  24. 24.
    L.A.A. Nikolopoulos, P. Lambropoulos, J. Phys. B: At. Mol. Opt. Phys. 34, 545 (2001)CrossRefGoogle Scholar
  25. 25.
    J.T. Broad, W.P. Reinhardt, J. Phys. B: At. Mol. Phys. 9, 1491 (1976)CrossRefGoogle Scholar
  26. 26.
    R. Gersbacher, J.T. Broad, J. Phys. B: At. Mol. Opt. Phys. 23, 365 (1990)CrossRefGoogle Scholar
  27. 27.
    D. Proulx, R. Shakeshaft, Phys. Rev. A 48, R875 (1993)Google Scholar
  28. 28.
    M. Pont, R. Shakeshaft, J. Phys. B: At. Mol. Opt. Phys. 28, L571 (1995)Google Scholar
  29. 29.
    J. Colgan, M. Pindzola, Phys. Rev. Lett. 88, 173002 (2002)CrossRefGoogle Scholar
  30. 30.
    L. Feng, H. van der Hart, J. Phys. B: At. Mol. Opt. Phys. 36, L1 (2003)Google Scholar
  31. 31.
    L.A.A. Nikolopoulos, P. Lambropoulos, J. Phys. B: At. Mol. Opt. Phys. 34, 545 (2001)CrossRefGoogle Scholar
  32. 32.
    T. Mercouris, C. Haritos, C.A. Nicolaides, J. Phys. B: At. Mol. Opt. Phys. 34, 3789 (2001)CrossRefGoogle Scholar
  33. 33.
    At 45 eV, the result obtained with the B-spline basis differs from a previous one given by S. Laulan, H. Bachau, in the Proceedings of the International conference on “Electron and photon impact ionisation and related topics” (Metz, 2002) which will be published by The Institute of Physics (IOP) series 171. This previous result has been obtained by using the interaction pictureGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Laboratoire de Physique Atomique, Moléculaire et OptiqueUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Katedra Fizyki Jadrowej i Bezpieczenstwa RadiacyjnegoUniwesytet \Lódzki\LódzPoland
  3. 3.Centre Lasers Intenses et Applications(UMR 5107 du CNRS)Université de Bordeaux ITalenceFrance

Personalised recommendations