Advertisement

The efficiency of the CMS Level-1 Triggerfor supersymmetric events

  • L. Boldizsár
  • J. Erö
  • M. Fierro
  • P. Hidas
  • A. Jeitler
  • N. Neumeister
  • P. Porth
  • H. Rohringer
  • L. Rurua
  • H. Sakulin
  • A. Taurok
  • C.-E. WulzEmail author
Scientific Note
  • 33 Downloads

Abstract.

The performance of the CMS Level-1 Trigger for supersymmetric events at an LHC luminosity of 2 x 1033 cm-2s-1 is reviewed. Energy and momentum trigger thresholds have been chosen to yield a maximum Level-1 output rate of 50 kHz, within a safety factor of three. The Level-1 trigger efficiencies for the majority of the channels studied are found to be greater than 90%, which provides a good basis for the High-Level Trigger, where more stringent conditions are applied. Reasons for occasional lower efficiencies are given.

Keywords

Field Theory Elementary Particle Quantum Field Theory Safety Factor Lower Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The TriDAS Project - The Level-1 Trigger Technical Design Report, CERN/LHCC 2000-38 (2000)Google Scholar
  2. 2.
    The TriDAS Project - Data Acquisition and High-Level Trigger Technical Design Report, CERN/LHCC 2002-26 (2002)Google Scholar
  3. 3.
    J. Lackey et al. , CMS Note 1998/074 (1998)Google Scholar
  4. 4.
    G.P. Heath, Nucl. Instr. Meth. A 461 (2001) 505Google Scholar
  5. 5.
    F. Gasparini et al. , Nucl. Instr. Meth. A 336 (1993) 91Google Scholar
  6. 6.
    J. Hauser, Proceedings of the Fifth Workshop on Electronics for LHC Experiments, Snowmass, Co., USA, Sept. 1999, CERN/99-09, CERN/LHCC/99-33 (1999) 304Google Scholar
  7. 7.
    J. Erö, Proceedings of the Fifth Workshop on Electronics for LHC Experiments, Snowmass, Co., USA, Sept. 1999, CERN/99-09, CERN/LHCC/99-33 (1999) 309Google Scholar
  8. 8.
    D. Acosta et al. , Nucl. Instr. Meth. A 496 (2003) 64; D. Acosta et al. , Proceedings of the Seventh Workshop on Electronics for LHC Experiments, Stockholm, Sweden, Sept. 2001, CERN/2001-005, CERN/LHCC/2001-034 (2001) 243; D. Acosta et al. , Proceedings of the Fifth Workshop on Electronics for LHC Experiments, Snowmass, Co., USA, Sept. 1999, CERN/99-09, CERN/LHCC/99-33 (1999) 318Google Scholar
  9. 9.
    M. Andlinger et al. , Nucl. Instr. Meth. A 370 (1996) 389Google Scholar
  10. 10.
    H. Sakulin, M. Fierro, CMS Note 2001/003 (2001)Google Scholar
  11. 11.
    C.-.E. Wulz, Nucl. Instr. Meth. A 473 (2001) 231; A. Taurok, H. Bergauer, M. Padrta, Nucl. Instr. Meth. A 473 (2001) 243Google Scholar
  12. 12.
    B.C. Allanach et al. , Eur. Phys. J. C 25 (2002) 113Google Scholar
  13. 13.
    N. Ghodbane, H.-U. Martyn, hep-ph/0201233 (2002)Google Scholar
  14. 14.
    S. Abel et al. , hep-ph/0003154 (2000)Google Scholar
  15. 15.
    H. Baer et al. , Phys. Rev. D 51 (1995) 1046; H. Baer et al. , Phys. Rev. D 52 (1995) 2746Google Scholar
  16. 16.
    T. Sjöstrand et al. , Comput. Phys. Commun. 135 (2001) 238Google Scholar
  17. 17.
    S. Mrenna, Comput. Phys. Commun. 101 (1997) 232Google Scholar
  18. 18.
    H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata, hep-ph/0001086 (2000). Version 7.51 was used for this study.Google Scholar
  19. 19.
    H. Lai et al. , Eur. Phys. J. C 12 (2000) 375Google Scholar
  20. 20.
    http://cmsdoc.cern.ch/cmsim/cmsim.html; C. Charlot et al. , C MS TN/93-63 (1993)Google Scholar
  21. 21.
    GEANT3 Detector Description and Simulation Tool, CERN program library long writeup W5013, release 15111999 (1999)Google Scholar
  22. 22.
    CMS Object Oriented Reconstruction, http://cmsdoc.cern.ch/orca/Google Scholar
  23. 23.
    The CMS Hadron Calorimeter Project - Technical Design Report, CERN/LHCC 97-31 (1997)Google Scholar
  24. 24.
    C. Zeitnitz, T. A. Gabriel, Nucl. Instr. Meth. A 349 (1994) 106; http://wswww.physik.uni-mainz.de/ zeitnitz/gcalor/gcalor_manual.psGoogle Scholar
  25. 25.
    V. V. Abramov et al. , Nucl. Instr. Meth. A 457 (2001) 75Google Scholar
  26. 26.
    The CMS Electromagnetic Calorimeter Project - Technical Design Report, CERN/LHCC 97-33 (1997)Google Scholar
  27. 27.
    A. Gresele, T. Rovelli, CMS Note 1999/064 (1999)Google Scholar
  28. 28.
    R. Wilkinson, P. T. Cox, CMS Note 2001/013 (2001)Google Scholar
  29. 29.
    G. Bruno, M. Konecki, CMS Note 2001/012 (2001)Google Scholar
  30. 30.
    D. Acosta, M. Stoutimore, S.M. Wang, CMS Note 2001/033 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • L. Boldizsár
    • 1
  • J. Erö
    • 2
  • M. Fierro
    • 2
  • P. Hidas
    • 1
  • A. Jeitler
    • 2
  • N. Neumeister
    • 2
  • P. Porth
    • 2
  • H. Rohringer
    • 2
  • L. Rurua
    • 2
  • H. Sakulin
    • 2
  • A. Taurok
    • 2
  • C.-E. Wulz
    • 2
    Email author
  1. 1.KFKI Research Institute for Particle and Nuclear PhysicsBudapestHungary
  2. 2.Institute for High Energy Physics of the Austrian Academy of SciencesViennaAustria

Personalised recommendations