Advertisement

Detecting metastable staus and gravitinos at the ILC

  • H.-U. MartynEmail author
Experimental Physics

Abstract

A study of various SUSY scenarios is presented in which the lightest supersymmetric particle is the gravitino \(\tilde{G}\) and the next-to-lightest supersymmetric particle is a scalar tau \(\tilde{\tau}\) with lifetimes ranging from seconds to years. Gravitinos are interesting dark matter candidates which can be produced in decays of heavier sparticles at the International Linear Collider (ILC), but remain undetected in direct searches of astrophysical experiments. We investigate the detection and measurement of metastable staus, which may be copiously produced at the ILC either directly or via cascade decays. A proper choice of the experimental conditions will allow one to collect large samples of \(\tilde{\tau}\)s coming to rest in the calorimeters of the ILC detector and to study the subsequent decays \(\tilde{\tau}\to\tau\tilde{G}\). Detailed simulations show that the properties of the stau and the gravitino, such as \(\tilde{\tau}\) mass and lifetime and \(\tilde{G}\) mass, can be accurately determined at a future ILC and may provide direct access to the gravitational coupling, respectively Planck scale.

Keywords

Planck Scale Time Projection Chamber International Linear Collider Gravitino Mass Light Supersymmetric Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Pagels, J.R. Primack, Phys. Rev. Lett. 48, 223 (1982); M.Y. Khlopov, A.D. Linde, Phys. Lett. B 138, 265 (1984); J.R. Ellis, J.E. Kim, D.V. Nanopoulos, Phys. Lett. B 145, 181 (1984); M. Bolz, W. Buchmüller, M. Plümacher, Phys. Lett. B 443, 209 (1998) [arXiv:hep-ph/9809381]CrossRefADSGoogle Scholar
  2. 2.
    Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar
  3. 3.
    W. Buchmüller, K. Hamaguchi, M. Ratz, T. Yanagida, Phys. Lett. B 588, 90 (2004) [arXiv:hep-ph/0402179]CrossRefADSGoogle Scholar
  4. 4.
    M. Bolz, A. Brandenburg, W. Büchmuller, Nucl. Phys. B 606, 518 (2001) [arXiv:hep-ph/0012052]CrossRefADSGoogle Scholar
  5. 5.
    J.L. Feng, A. Rajaraman, F. Takayama, Phys. Rev. Lett. 91, 011302 (2003) [arXiv:hep-ph/0302215]; Phys. Rev. D 68, 063504 (2003) [arXiv:hep-ph/0306024]CrossRefADSGoogle Scholar
  6. 6.
    K. Hamaguchi, Y. Kuno, T. Nakaya, M.M. Nojiri, Phys. Rev. D 70, 115007 (2004) [arXiv:hep-ph/0409248]CrossRefADSGoogle Scholar
  7. 7.
    J.L. Feng, B.T. Smith, Phys. Rev. D 71, 015004 (2005) [Erratum-ibid. D 71, 0109904 (2005)] [arXiv:hep-ph/0409 278]CrossRefADSGoogle Scholar
  8. 8.
    A. De Roeck, J.R. Ellis, F. Gianotti, F. Moortgat, K.A. Olive, L. Pape, arXiv:hep-ph/0508198Google Scholar
  9. 9.
    M. Dine, A.E. Nelson, Y. Shirman, Phys. Rev. D 51, 1362 (1995) [arXiv:hep-ph/9408384]CrossRefADSGoogle Scholar
  10. 10.
    T. Moroi, H. Murayama, M. Yamaguchi, Phys. Lett. B 303, 289 (1993)CrossRefADSGoogle Scholar
  11. 11.
    B.C. Allanach et al., Eur. Phys. J. C 25, 113 (2002) [arXiv:hep-ph/0202233]Google Scholar
  12. 12.
    H.P. Nilles, Phys. Rept. 110, 1 (1984)CrossRefADSGoogle Scholar
  13. 13.
    D.E. Kaplan, G.D. Kribs, M. Schmaltz, Phys. Rev. D 62, 035010 (2000) [arXiv:hep-ph/9911293]; Z. Chacko, M.A. Luty, A.E. Nelson, E. Ponton, JHEP 0001, 003 (2000) [arXiv:hep-ph/9911323]CrossRefADSGoogle Scholar
  14. 14.
    W. Buchmüller, J. Kersten, K. Schmidt-Hoberg, JHEP 0602, 069 (2006) [arXiv:hep-ph/0512152]CrossRefADSGoogle Scholar
  15. 15.
    W. Buchmüller, K. Hamaguchi, J. Kersten, Phys. Lett. B 632, 366 (2006) [arXiv:hep-ph/0506105]CrossRefADSGoogle Scholar
  16. 16.
    W. Porod, Comput. Phys. Commun. 153, 275 (2003) [arXiv:hep-ph/0301101]CrossRefADSGoogle Scholar
  17. 17.
    A. Djouadi, J.L. Kneur, G. Moultaka, arXiv:hep-ph/0211 331Google Scholar
  18. 18.
    TESLA Technical Design Report, DESY 2001-011, Part IV: A Detector for TESLAGoogle Scholar
  19. 19.
    Large Detector Concept working group, http://www.ilcdc.orgGoogle Scholar
  20. 20.
    B. Rossi, High-Energy Particles (Prentice-Hall, Inc., 1952)Google Scholar
  21. 21.
    T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin, Comput. Phys. Commun. 135, 238 (2001) [arXiv:hep-ph/0010017]zbMATHCrossRefADSGoogle Scholar
  22. 22.
    T. Ohl, Comput. Phys. Commun. 101, 269 (1997) [arXiv: hep-ph/9607454]CrossRefADSGoogle Scholar
  23. 23.
    M. Pohl, H.J. Schreiber, DESY-02-061, arXiv:hep-ex/0206 009Google Scholar
  24. 24.
    S. Jadach, Z. Was, R. Decker, J.H. Kuhn, Comput. Phys. Commun. 76, 361 (1993)CrossRefADSGoogle Scholar
  25. 25.
    E. Boos, H.-U. Martyn, G.A. Moortgat-Pick, M. Sachwitz, A. Sherstnev, P.M. Zerwas, Eur. Phys. J. C 30, 395 (2003) [arXiv:hep-ph/0303110]CrossRefADSGoogle Scholar
  26. 26.
    A. Freitas, A. von Manteuffel, P.M. Zerwas, Eur. Phys. J. C 34, 487 (2004) [arXiv:hep-ph/0310182]; Eur. Phys. J. C 40, 435 (2005) [arXiv:hep-ph/0408341]; A. Freitas, D.J. Miller, P.M. Zerwas, Eur. Phys. J. C 21, 361 (2001) [arXiv:hep-ph/0106198]CrossRefADSGoogle Scholar
  27. 27.
    J.L. Feng, M.E. Peskin, Phys. Rev. D 64, 115002 (2001) [arXiv:hep-ph/0105100]CrossRefADSGoogle Scholar
  28. 28.
    G. Eckerlin, private communicationGoogle Scholar
  29. 29.
    A. Brandenburg, L. Covi, K. Hamaguchi, L. Roszkowski, F.D. Steffen, Phys. Lett. B 617, 99 (2005) [arXiv:hep-ph/0501287]CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.I. Physikalisches InstitutRWTH AachenAachenGermany
  2. 2.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations