Deconfinement in dense two-color QCD

  • S. Hands
  • S. Kim
  • J.-I. SkullerudEmail author
Theoretical Physics


We study SU(2) lattice gauge theory with two flavors of Wilson fermion at non-zero chemical potential μ and low temperature on a 83×16 system. We identify three régimes along the μ-axis. For μ≲mπ/2 the system remains in the vacuum phase and all physical observables considered remain essentially unchanged. The intermediate régime is characterised by a non-zero diquark condensate and an associated increase in the baryon density, consistent with what is expected for Bose–Einstein condensation of tightly bound diquarks. We also observe screening of the static quark potential here. In the high-density deconfined régime we find a non-zero Polyakov loop and a strong modification of the gluon propagator, including significant screening in the magnetic sector in the static limit, which must have a non-perturbative origin. The behaviour of thermodynamic observables and the superfluid order parameter are consistent with a Fermi surface disrupted by a BCS diquark condensate. The energy per baryon as a function of μ exhibits a minimum in the deconfined régime, implying that macroscopic objects such as stars formed in this theory are largely composed of quark matter.


Fermi Surface Quark Matter Baryon Density Polyakov Loop Gluon Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Rajagopal, F. Wilczek, The condensed matter physics of QCD, in At the Frontier of Particle Physics: Handbook of QCD, ed. by M. Shifman (World Scientific, Singapore, 2001) p. 2061 [hep-ph/0011333]Google Scholar
  2. 2.
    M.G. Alford, Ann. Rev. Nucl. Part. Sci. 51, 131 (2001) [hep-ph/0102047]CrossRefADSGoogle Scholar
  3. 3.
    T. Schäfer, hep-ph/0304281, Lectures given at 14th National Nuclear Physics Summer School, Santa Fe, New Mexico, 28 July–10 Aug 2002Google Scholar
  4. 4.
    I.A. Shovkovy, Found. Phys. 35, 1309 (2005) [nucl-th/ 0410091]CrossRefMathSciNetGoogle Scholar
  5. 5.
    O. Philipsen, PoS LAT2005, 016 (2005) [hep-lat/0510077]Google Scholar
  6. 6.
    S. Hands, J.B. Kogut, M.-P. Lombardo, S.E. Morrison, Nucl. Phys. B 558, 327 (1999) [hep-lat/9902034]CrossRefADSGoogle Scholar
  7. 7.
    R. Aloisio, V. Azcoiti, G. Di Carlo, A. Galante, A.F. Grillo, Phys. Lett. B 493, 189 (2000) [hep-lat/0009034]CrossRefADSGoogle Scholar
  8. 8.
    S. Hands et al., Eur. Phys. J. C 17, 285 (2000) [hep-lat/0006018]Google Scholar
  9. 9.
    S. Hands, I. Montvay, L. Scorzato, J. Skullerud, Eur. Phys. J. C 22, 451 (2001) [hep-lat/0109029]zbMATHCrossRefADSGoogle Scholar
  10. 10.
    J.B. Kogut, D. Toublan, D.K. Sinclair, Nucl. Phys. B 642, 181 (2002) [hep-lat/0205019]zbMATHCrossRefADSGoogle Scholar
  11. 11.
    S. Muroya, A. Nakamura, C. Nonaka, Phys. Lett. B 551, 305 (2003) [hep-lat/0211010]zbMATHCrossRefADSGoogle Scholar
  12. 12.
    B. Allés, M. D’Elia, M.P. Lombardo, hep-lat/0602022Google Scholar
  13. 13.
    S. Chandrasekharan, F.-J. Jiang, hep-lat/0602031Google Scholar
  14. 14.
    L.A. Kondratyuk, M.M. Giannini, M.I. Krivoruchenko, Phys. Lett. B 269, 139 (1991)CrossRefADSGoogle Scholar
  15. 15.
    S. Dürr, PoS LAT2005, 021 (2005) [hep-lat/0509026]Google Scholar
  16. 16.
    M. Golterman, Y. Shamir, B. Svetitsky, hep-lat/0602026Google Scholar
  17. 17.
    W. Bietenholz, U.J. Wiese, Phys. Lett. B 426, 114 (1998) [hep-lat/9801022]CrossRefADSGoogle Scholar
  18. 18.
    J.-I. Skullerud, S. Ejiri, S. Hands, L. Scorzato, hep-lat/ 0312002Google Scholar
  19. 19.
    J.B. Kogut, D.K. Sinclair, S.J. Hands, S.E. Morrison, Phys. Rev. D 64, 094505 (2001) [hep-lat/0105026]CrossRefADSGoogle Scholar
  20. 20.
    F. Karsch, I.O. Stamatescu, Phys. Lett. B 227, 153 (1989)CrossRefADSGoogle Scholar
  21. 21.
    F. Karsch, Nucl. Phys. B 205, 285 (1982)CrossRefADSGoogle Scholar
  22. 22.
    C.R. Allton et al., Phys. Rev. D 68, 014507 (2003) [hep-lat/0305007]CrossRefGoogle Scholar
  23. 23.
    J. Kogut, M. Stephanov, D. Toublan, J. Verbaarschot, A. Zhitnitsky, Nucl. Phys. B 582, 477 (2000) [hep-ph/ 0001171]CrossRefADSGoogle Scholar
  24. 24.
    S. Hands, D.N. Walters, Phys. Lett. B 548, 196 (2002) [hep-lat/0209140]zbMATHCrossRefADSGoogle Scholar
  25. 25.
    J. Engels, J. Fingberg, F. Karsch, D. Miller, M. Weber, Phys. Lett. B 252, 625 (1990)CrossRefADSGoogle Scholar
  26. 26.
    CP-PACS, A. Ali Khan et al., Phys. Rev. D 64, 074510 (2001) [hep-lat/0103028]CrossRefGoogle Scholar
  27. 27.
    QCDSF–UKQCD, M. Göckeler et al., hep-ph/0409312Google Scholar
  28. 28.
    M.A. Metlitski, A.R. Zhitnitsky, Nucl. Phys. B 731, 309 (2005) [hep-ph/0508004]CrossRefADSGoogle Scholar
  29. 29.
    UKQCD, D.B. Leinweber, J.I. Skullerud, A.G. Williams, C. Parrinello, Phys. Rev. D 60, 094507 (1999) [hep-lat/9811027]CrossRefGoogle Scholar
  30. 30.
    T. Schäfer, F. Wilczek, Phys. Rev. Lett. 82, 3956 (1999) [hep-ph/9811473]CrossRefADSGoogle Scholar
  31. 31.
    D.T. Son, Phys. Rev. D 59, 094019 (1999) [hep-ph/ 9812287]CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    N.K. Glendenning, Compact Stars (Springer, New York, 2000)Google Scholar
  33. 33.
    L. Levkova, T. Manke, R. Mawhinney, Phys. Rev. D 73, 074504 (2006) [hep-lat/0603031]CrossRefADSGoogle Scholar
  34. 34.
    R. Morrin, A. Ó Cais, M. Peardon, S.M. Ryan, J.-I. Skul- lerud, Phys. Rev. D 74, 01405 (2006) [hep-lat/0604021]CrossRefADSGoogle Scholar
  35. 35.
    G.E. Brown, M. Rho, Phys. Rev. Lett. 66, 2720 (1991)CrossRefADSGoogle Scholar
  36. 36.
    F. Sannino, W. Schäfer, Phys. Lett. B 527, 142 (2002) [hep-ph/0111098]zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    T. Schäfer, Phys. Rev. D 67, 074502 (2003) [hep-lat/ 0211035]CrossRefADSGoogle Scholar
  38. 38.
    S. Hands, J.B. Kogut, C.G. Strouthos, T.N. Tran, Phys. Rev. D 68, 016005 (2003) [hep-lat/0302021]CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Wales SwanseaSwanseaUK
  2. 2.Department of PhysicsSejong UniversitySeoulKorea
  3. 3.School of MathematicsTrinity CollegeDublin 2Ireland

Personalised recommendations