Advertisement

Astroparticle physics with high energy neutrinos: from AMANDA to IceCube

  • F. HalzenEmail author
Experimental Physics

Abstract

Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 eV and 1013 eV, respectively. The puzzle of where and how Nature accelerates the highest energy cosmic particles is unresolved almost a century after their discovery. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of this review is as follows:
  • Introduction

  • Why kilometer-scale detectors?

  • Cosmic neutrinos associated with the highest energy cosmic rays

  • High energy neutrino telescopes: methodologies of neutrino detection

  • High energy neutrino telescopes: status

Keywords

Dark Matter Neutrino Flux Neutrino Detection High Energy Neutrino Cosmic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Totsuka, Rept. Prog. Phys. 55, 377 (1992)CrossRefADSGoogle Scholar
  2. 2.
    K. Greisen, Ann. Rev. Nucl. Part. Sci. 10, 63 (1960), M.A. Markov, in: Proceedings of the 1960 International Conference on High Energy Physics, ed. by E.C.G. Sudarshan, J.H. Tinlot, A.C. Melissinos, 578 (1960)CrossRefADSGoogle Scholar
  3. 3.
    T. K. Gaisser, F. Halzen, T. Stanev, Phys. Rep. 258, 173 (1995) [Erratum 271, 355 (1995)] [hep-ph/9410384]; J.G. Learned K. Mannheim, Ann. Rev. Nucl. Part. Sci. 50, 679 (2000); F. Halzen, D. Hooper, Rept. Prog. Phys. 65, 1025 (2002) [arXiv:astro-ph/0204527]CrossRefADSGoogle Scholar
  4. 4.
    IceCube Collaboration, J. Ahrens et al., Astropart. Phys. 20, 507 (2004) [astro-ph/0305196], http://icecube.wisc.eduCrossRefGoogle Scholar
  5. 5.
    A. Achterberg et al., in: Proceedings of the 29th International Cosmic Ray Conference, Pune, India, 2005 [arXiv:astro-ph/0509330]; G. Hill, invited talk at the same conferenceGoogle Scholar
  6. 6.
    M.C. Gonzalez-Garcia, F. Halzen, M. Maltoni, Phys. Rev. D 71, 093010 (2005) [arXiv:hep-ph/0502223]CrossRefADSGoogle Scholar
  7. 7.
    www.pha.jhu.edu/∼bagger/talks/HEPAP.pdfGoogle Scholar
  8. 8.
    L. Anchordoqui, F. Halzen, arXiv:hep-ph/0510389Google Scholar
  9. 9.
    G. Bertone, D. Hooper, J. Silk, Phys. Rept. 405, 279 (2005) [arXiv:hep-ph/0404175]CrossRefADSGoogle Scholar
  10. 10.
    J.L. Feng, A. Rajaraman, F. Takayama, Int. J. Mod. Phys. D 13, 2355 (2004) [arXiv:hep-th/0405248]CrossRefADSGoogle Scholar
  11. 11.
    For a recent review see: S. Pakvasa J.W.F. Valle, Proc. Indian Natl. Sci. Acad. 70A, 189 (2003)Google Scholar
  12. 12.
    R. Foot, C.N. Leung, O. Yasuda, Phys. Lett. B 443, 185 (1998); M.C. Gonzalez-Garcia et al., Phys. Rev. Lett. 82, 3202 (1999); G.L. Fogli, E. Lisi, A. Marrone G. Scioscia, Phys. Rev. D 60, 053006 (1999); P. Lipari M. Lusignoli, Phys. Rev. D 60, 013003 (1999) [hep-ph/9901350], N. Fornengo, M.C. Gonzalez-Garcia, J.W.F. Valle, JHEP 0007, 006 (2000); G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, Phys. Rev. D 67, 093006 (2003)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    M.C. Gonzalez-Garcia, M. Maltoni, Phys. Rev. D 70, 033010 (2004)CrossRefADSGoogle Scholar
  14. 14.
    DUMAND Collaboration, J. Babson et al., Phys. Rev. D 42, 3613 (1990)CrossRefGoogle Scholar
  15. 15.
    Baikal Collaboration, V.A. Balkanov et al., Nucl. Phys. Proc. Suppl. 118, 363 (2003)CrossRefGoogle Scholar
  16. 16.
    E. Migneco et al., Nucl. Phys. Proc. Suppl. 136, 61 (2004)CrossRefADSGoogle Scholar
  17. 17.
    AMANDA collaboration, A. Karle, in: Observation of Atmospheric Neutrino Events with AMANDA, Proceedings of the 26th International Cosmic Ray Conference, Salt Lake City, Utah (1999); AMANDA Collaboration, E. Andres et al., Nature 410, 441 (2001); Phys. Rev. D 66, 012005 (2002) [arXiv:astro-ph/0205109]Google Scholar
  18. 18.
    T.K. Gaisser, in: Proceedings of the 31st International Conference on High Energy Physics, Amsterdam, The Netherlands, July 2002Google Scholar
  19. 19.
    D.V. Semikoz, G. Sigl, JCAP 0404, 003 (2004) [arXiv:hep-ph/0309328]ADSGoogle Scholar
  20. 20.
    J.N. Bahcall, E. Waxman, Phys. Rev. D 64, 023002 (2001)CrossRefADSGoogle Scholar
  21. 21.
    T.K. Gaisser, OECD Megascience Forum, Taormina, Italy, 1997, arXiv:astro-ph/9707283Google Scholar
  22. 22.
    M. Ahlers, L.A. Anchordoqui, H. Goldberg, F. Halzen, A. Ringwald, T.J. Weiler, arXiv:astro-ph/0503229Google Scholar
  23. 23.
    AMANDA Collaboration, J. Ahrens et al., Phys. Rev. Lett. 90, 251101 (2003) [arXiv:astro-ph/0309585]CrossRefGoogle Scholar
  24. 24.
    P. Gondolo, G. Ingelman, M. Thunman, Nucl. Phys. Proc. Suppl. 48, 472 (1996) [arXiv:hep-ph/9602402]CrossRefADSGoogle Scholar
  25. 25.
    F.W. Stecker, M.H. Salamon, Astrophys. J. 512, 521 (1992) [arXiv:astro-ph/9808110]; A. Atoyan, C.D. Dermer, Phys. Rev. Lett. 87, 221102 (2001) [arXiv:astro-ph/0108053] and references therein; F.W. Stecker, Phys. Rev. D. 72, 107301 (2005) [arXiv:astro-ph/0510537] for a recent updateCrossRefADSGoogle Scholar
  26. 26.
    K. Mannheim, R.J. Protheroe, J.P. Rachen, Phys. Rev. D 63, 023003 (2001) [arXiv:astro-ph/9812398]MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    D. Guetta et al., Astropart. Phys. 20, 429 (2004) [arXiv:astro-ph/0302524]CrossRefGoogle Scholar
  28. 28.
    J.P. Rachen, P.L. Biermann, Astron. Astrophys. 272, 161 (1993) [arXiv:astro-ph/9301010]ADSGoogle Scholar
  29. 29.
    E. Waxman, J.N. Bahcall, Phys. Rev. Lett. 78, 2292 (1997) [arXiv:astro-ph/9701231]CrossRefADSGoogle Scholar
  30. 30.
    M. Vietri, Phys. Rev. Lett. 80, 3690 (1998) [arXiv:astro-ph/9802241]CrossRefADSGoogle Scholar
  31. 31.
    M. Bottcher, C.D. Dermer, M. Bottcher, C.D. Dermer, arXiv:astro-ph/9801027, Astrophys. J. 574, 65 (2002) [arXiv:astro-ph/0005440]CrossRefGoogle Scholar
  32. 32.
    R. Engel, D. Seckel, T. Stanev, Phys. Rev. D 64, 093010 (2001) [astro-ph/0101216] and references thereinCrossRefADSGoogle Scholar
  33. 33.
    A. Loeb, E. Waxman, arXiv:astro-ph/0601695Google Scholar
  34. 34.
    V.S. Berezinsky, V.A. Kudryavtsev, Sov. Astron. Lett. 14, 873 (1998)Google Scholar
  35. 35.
    Talks at Gamma 2004, Heidelberg, Germany, 2004; H.J. Volk, E.G. Berezhko, L.T. Ksenofontov, submitted to Astron. Astrophys. [arXiv:astro-ph/0409453]Google Scholar
  36. 36.
    J. Alvarez-Muniz, F. Halzen, Astrophys. J. 576, L33 (2002)Google Scholar
  37. 37.
    HESS collaboration, D. Berge et al., 3rd International Symposium on High-Energy Gamma-ray Astronomy, Heidelberg, GermanyGoogle Scholar
  38. 38.
    T. Ahmed et al., Phys. Lett. B 324, 241 (1994)CrossRefADSGoogle Scholar
  39. 39.
    J. Kwiecinski, A.D. Martin, A.M. Stasto, Acta Phys. Polon. B 31, 1273 (2000) [arXiv:hep-ph/0004109] and references thereinADSGoogle Scholar
  40. 40.
    F. Halzen, D. Saltzberg, Phys. Rev. Lett. 81, 4305 (1998) [arXiv:hep-ph/9804354]CrossRefADSGoogle Scholar
  41. 41.
    R.M. Crocker, F. Melia, R.R. Volkas, Astrophys. J. 622, L37 (2005) [arXiv:astro-ph/0411471]Google Scholar
  42. 42.
    F. Halzen, D. Hooper, JCAP 0401, 002 (2004) [arXiv:astro-ph/0310152]ADSGoogle Scholar
  43. 43.
    J.G. Learned, S. Pakvasa, Astropart. Phys. 3, 267 (1995) [arXiv:hep-ph/9405296]CrossRefADSGoogle Scholar
  44. 44.
    M. Ackermann et al., Astropart. Phys. 22, 339 (2005)CrossRefGoogle Scholar
  45. 45.
    M. Ackermann et al., Astropart. Phys. 22, 22127 (2004)Google Scholar
  46. 46.
    F. Halzen, J. Jacobsen, E. Zas, Phys. Rev. D 53, 7359 (1996)CrossRefADSGoogle Scholar
  47. 47.
    SNEWS at http://snews.bnl.gov/Google Scholar
  48. 48.
    G. Raffelt et al., JCAP 0306, 005 (2003)Google Scholar
  49. 49.
    ANTARES Collaboration, T. Montaruli et al., in: Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan, 2003Google Scholar
  50. 50.
    http://www.nestor.org.gr/Google Scholar
  51. 51.
    For a more extensive review, see: A. Karle, Proceedings of the 2005 TAUP Workshop, Zaragossa, Spain, (2005)Google Scholar
  52. 52.
    T. Montaruli, private communicationGoogle Scholar
  53. 53.
    NEMO Collaboration, R. Coniglione et al., http://nemoweb.lns.infn.it/publication.htmgaisGoogle Scholar
  54. 54.
    N.G. Lehtinen et al., Astropart. Phys., 17, 272 (2002) [arXiv:astro-ph/0104033]Google Scholar
  55. 55.
    G.M. Frichter et al., Phys. Rev. D 53, 1684 (1996 ) [arXiv:astro-ph/9507078]Google Scholar
  56. 56.
    P. Gorham, 2002 Aspen Winter Conference on Ultra High Energy Particles from Space, http://astro.uchicago.edu/home/web/olinto/aspen/astrowebGoogle Scholar
  57. 57.
    P. Lipari, T. Stanev, Phys. Rev. D 44, 3543 (1991)CrossRefADSGoogle Scholar
  58. 58.
    L.A. Anchordoqui, H. Goldberg, M.C. Gonzalez-Garcia, F. Halzen, D. Hooper, S. Sarkar, T.J. Weiler, Phys. Rev. D 72, 065019 (2005) [arXiv:hep-ph/0506168]CrossRefADSGoogle Scholar
  59. 59.
    F. Halzen, A.D. Martin, Quarks And Leptons: An Introductory Course In Modern Particle Physics, (J. Wiley and Sons, 1984)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations