Advertisement

Pion condensation in electrically neutral cold matter with finite baryon density

  • D. EbertEmail author
  • K.G. Klimenko
Theoretical Physics

Abstract

The possibility of the pion condensation phenomenon in cold and electrically neutral dense baryonic matter is investigated in β-equilibrium. For simplicity, the consideration is performed in the framework of a Nambu–Jona-Lasinio model with two quark flavors at zero current quark mass and for rather small values of the baryon chemical potential, where the diquark condensation might be ignored. Two sets of model parameters are used. For the first, the pion condensed phase with finite baryon density is realized. In this phase both electrons and the pion condensate take part in the neutralization of the quark electric charge. For the second set of model parameters, the pion condensation is impossible if the neutrality condition is imposed. The behavior of meson masses vs. quark chemical potential has been studied in electrically neutral matter.

Keywords

Electric Charge Quark Mass Neutrality Condition Condensed Phase Meson Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.B. Migdal, D.N. Voskresensky, E.E. Saperstein, M.A. Troitsky, Pion Degrees of Freedom in Nuclear Matter (Nauka, Moscow, 1990)Google Scholar
  2. 2.
    A.B. Migdal, O.A. Markin, I.N. Mishustin, G.A. Sorokin, Zh. Eksp. Teor. Fiz. 72, 1247 (1977); A.B. Migdal, A.I. Chernoutsan, I.N. Mishustin, Phys. Lett. B 83, 158 (1979)Google Scholar
  3. 3.
    R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); D.J. Scalapino, Phys. Rev. Lett. 29, 386 (1972); D.K. Campbell, R.F. Dashen, J.T. Manassah, Phys. Rev. D 12, 979 (1975)CrossRefADSGoogle Scholar
  4. 4.
    D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 86, 592 (2001); K. Splittorff, D.T. Son, M.A. Stephanov, Phys. Rev. D 64, 016003 (2001); J.B. Kogut, D. Toublan, Phys. Rev. D 64, 034007 (2001); M. Loewe, C. Villavicencio, Phys. Rev. D 71, 094001 (2005); C. Villavicencio, hep-ph/0510124CrossRefADSGoogle Scholar
  5. 5.
    D.T. Son, M.A. Stephanov, Phys. At. Nucl. 64, 834 (2001); J.B. Kogut, D.K. Sinclair, Phys. Rev. D 66, 014508 (2002); Phys. Rev. D 66, 034505 (2002); S. Gupta, hep-lat/0202005CrossRefGoogle Scholar
  6. 6.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)CrossRefADSGoogle Scholar
  7. 7.
    D. Ebert, M.K. Volkov, Yad. Fiz. 36, 1265 (1982); Z. Phys. C 16, 205 (1983); D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986)Google Scholar
  8. 8.
    M.K. Volkov, Ann. Phys. 157, 282 (1984); Fiz. Elem. Chastits At. Yadra 17, 433 (1986)CrossRefGoogle Scholar
  9. 9.
    S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992); T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994); D. Ebert, H. Reinhardt, M.K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    D. Toublan, J.B. Kogut, Phys. Lett. B 564, 212 (2003); M. Frank, M. Buballa, M. Oertel, Phys. Lett. B 562, 221 (2003); A. Barducci, R. Casalbuoni, G. Pettini, L. Ravagli, Phys. Lett. B 564, 217 (2003); S. Lawley, W. Bentz, A.W. Thomas, Phys. Lett. B 632, 495 (2006)CrossRefADSGoogle Scholar
  11. 11.
    P.F. Bedaque, Nucl. Phys. A 697, 569 (2002); O. Kiriyama, S. Yasui, H. Toki, Int. J. Mod. Phys. E 10, 501 (2001)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    A. Barducci, R. Casalbuoni, G. Pettini, L. Ravagli, Phys. Rev. D 69, 096004 (2004)CrossRefADSGoogle Scholar
  13. 13.
    L. He, P. Zhuang, Phys. Lett. B 615, 93 (2005); L. He, M. Jin, P. Zhuang, Phys. Rev. D 71, 116001 (2005); hep-ph/0503249CrossRefADSGoogle Scholar
  14. 14.
    D. Ebert, K.G. Klimenko, hep-ph/0507007Google Scholar
  15. 15.
    M. Buballa, Phys. Rep. 407, 205 (2005)CrossRefADSGoogle Scholar
  16. 16.
    M. Huang, I.A. Shovkovy, Nucl. Phys. A 729, 835 (2003); M. Huang, Int. J. Mod. Phys. E 14, 675 (2005); I.A. Shovkovy, nucl-th/0410091zbMATHCrossRefADSGoogle Scholar
  17. 17.
    H. Abuki, T. Kunihiro, hep-ph/0509172Google Scholar
  18. 18.
    T.M. Schwarz, S.P. Klevansky, G. Papp, Phys. Rev. C 60, 055205 (1999); J. Berges, K. Rajagopal, Nucl. Phys. B 538, 215 (1999); V.Ch. Zhukovsky et al., JETP Lett. 74, 523 (2001); hep-ph/0108185; D. Blaschke et al., Phys. Rev. D 70, 014006 (2004)CrossRefADSGoogle Scholar
  19. 19.
    D. Ebert, K.G. Klimenko, H. Toki, Phys. Rev. D 64, 014038 (2001); D. Ebert et al., Phys. Rev. D 65, 054024 (2002)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    M. Buballa, Nucl. Phys. A 611, 393 (1996); D. Ebert, K.G. Klimenko, Nucl. Phys. A 728, 203 (2003); Phys. At. Nucl. 68, 124 (2005) [Yad. Fiz. 68, 126 (2005)]CrossRefADSGoogle Scholar
  21. 21.
    D. Ebert, K.G. Klimenko, V.L. Yudichev, Phys. Rev. C 72, 015201 (2005); Phys. Rev. D 72, 056007 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institute of High Energy PhysicsProtvinoRussia

Personalised recommendations