Associate Higgs and gauge boson production at hadron colliders in a model with vector resonances

  • A.R. ZerwekhEmail author
Theoretical Physics


Motivated by new models of dynamical electroweak symmetry breaking that predict a light composite Higgs boson, we build an effective Lagrangian which describes the standard model (with a light Higgs) and vector resonances. We compute the cross section for the associate production of a Higgs and a gauge boson. For some values of model parameters we find that the cross section is significantly enhanced with respect to the standard model. This enhancement is similar at the LHC (large hadron collider) and the Tevatron for the same range of resonance mass.


Field Theory Elementary Particle Quantum Field Theory Higgs Boson Large Hadron Collider 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.T. Hill, E.H. Simmons, Phys. Rept. 381, 235 (2003) [Erratum-ibid. 390, 553 (2004)] [arXiv:hep-ph/0203079]CrossRefADSGoogle Scholar
  2. 2.
    D.D. Dietrich, F. Sannino, K. Tuominen, Phys. Rev. D 72, 055001 (2005) [arXiv:hep-ph/0505059]MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    For a review of effective models of a strong electroweak symmetry breaking sector with scalar and vector resonances, see D. Dominici, Riv. Nuovo Cim. 20, 1 (1997) [arXiv:hep-ph/9711385]Google Scholar
  4. 4.
    H.B. O’Connell, B.C. Pearce, A.W. Thomas, A.G. Williams, Prog. Part. Nucl. Phys. 39, 201 (1997) [arXiv:hep-ph/9501251]CrossRefGoogle Scholar
  5. 5.
    A.R. Zerwekh, R. Rosenfeld, Phys. Lett. B 503, 325 (2001) [arXiv:hep- ph/0103159]CrossRefADSGoogle Scholar
  6. 6.
    A.R. Zerwekh, arXiv:hep-ph/0307130Google Scholar
  7. 7.
    R.S. Chivukula, E.H. Simmons, H.J. He, M. Kurachi, M. Tanabashi, Phys. Rev. D 71, 115001 (2005) [arXiv:hep-ph/0502162]CrossRefADSGoogle Scholar
  8. 8.
    M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164, 217 (1988)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    R. Casalbuoni, S. De Curtis, D. Dominici, R. Gatto, Phys. Lett. B 155, 95 (1985); Nucl. Phys. 282, 235 (1987); R. Casalbuoni, P. Chiappetta, A. Deandrea, D. Dominici, R. Gatto, Z. Phys. C 60, 315 (1993); R. Casalbuoni, P. Chiappetta, S. De Curtis, F. Feruglio, R. Gatto, B. Mele, J. Terron, Phys. Lett. B 249, 130 (1990); R. Casalbuoni, P. Chiappetta, M.C. Cousinou, S. De Curtis, F. Feruglio, R. Gatto, Phys. Lett. B 253, 275 (1991); L. Antichini, R. Casalbuoni, S. De Curtis, Phys. Lett. B 348, 521 (1995)CrossRefADSGoogle Scholar
  10. 10.
    R. Casalbuoni, S. De Curtis, D. Dominici, M. Grazzini, Phys. Rev. D 56, 5731 (1997) [arXiv:hep-ph/9704229]CrossRefADSGoogle Scholar
  11. 11.
    A.V. Semenov, arXiv:hep-ph/0208011; A. Semenov. LanHEP – a package for automatic generation of Feynman rules. User’s manual. INP MSU Preprint 96-24/431, Moscow, 1996 [hep-ph/9608488]; A. Semenov, Nucl. Instrum. Methods A 393, 293 (1997); A. Semenov, LanHEP – a package for automatic generation of Feynman rules from the Lagrangian. Updated version 1.3. INP MSU Preprint 98-2/503, home page:∼semenov/lanhep.htmlCrossRefADSGoogle Scholar
  12. 12.
    CompHEP Collaboration: E. Boos et al., CompHEP 4.4: Automatic computations from Lagrangians to events, Nucl. Instrum. Methods A 534, 250 (2004) [hep-ph/0403113] CompHEP – a package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 3.3, hep-ph/9908288 home page: Scholar
  13. 13.
    R. Rosenfeld, Phys. Rev. D 50, 4283 (1994) [arXiv:hep-ph/9403356]CrossRefADSGoogle Scholar
  14. 14.
    S. Eidelman et al., Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Instituto de Física, Facultad de CienciasUniversidad Austral de ChileValdiviaChile

Personalised recommendations