The multiplets of finite-width 0++ mesons and encounters with exotics

  • M. MajewskiEmail author
Theoretical Physics


The complex-mass (finite-width) 0++ nonet and decuplet are investigated by means of the exotic commutator method. The hypothesis of the vanishing of the exotic commutators leads to the system of master equations (ME). Solvability conditions of these equations define relations between the complex masses of the nonet and decuplet mesons which, in turn, determine relations between the real masses (mass formulae), as well as between the masses and widths of the mesons. Mass formulae are independent of the particle widths. The masses of the nonet and decuplet particles obey simple ordering rules. The nonet mixing angle and the mixing matrix of the isoscalar states of the decuplet are completely determined by solution of ME; they are real and do not depend on the widths. All known scalar mesons with the mass smaller than 2000 MeV (excluding σ(600)) and one with the mass \(2200\div 2400 \mathrm{MeV}\) belong to two multiplets: the nonet (a0(980),K0(1430),f0(980),f0(1710)) and the decuplet (a0(1450),K0(1950),f0(1370),f0(1500),f0(2200)/f0(2330)). It is shown that the famed anomalies of the f0(980) and a0(980) widths arise from an extra “kinematical” mechanism, suppressing decay, which is not conditioned by the flavor coupling constant. Therefore, they do not justify rejecting the qq̄ structure of them. A unitary singlet state (glueball) is included into the higher lying multiplet (decuplet) and is divided among the f0(1370) and f0(1500) mesons. The glueball contents of these particles are totally determined by the masses of decuplet particles. Mass ordering rules indicate that the meson σ(600) does not mix with the nonet particles.


Field Theory Elementary Particle Quantum Field Theory Master Equation Singlet State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Morgan, Phys. Lett. B 51, 71 (1974)CrossRefADSGoogle Scholar
  2. 2.
    S. Eidelman, Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar
  3. 3.
    S. Godfrey, N. Isgur, Phys. Rev. D 32 189 (1985)Google Scholar
  4. 4.
    R.J. Jaffe, Phys. Rev. D 15, 267 (1977)CrossRefADSGoogle Scholar
  5. 5.
    J. Weinstein, N. Isgur, Phys. Rev. Lett. 48, 659 (1982); Phys. Rev. D 27, 588 (1983); 41, 2236 (1990)CrossRefADSGoogle Scholar
  6. 6.
    N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Z. Phys. C 22, 53 (1984)CrossRefGoogle Scholar
  7. 7.
    N.A. Tornqvist, Phys. Rev. Lett. 49, 624 (1982); Z. Phys. C 68, 647 (1995); hep-ph/9504372CrossRefADSGoogle Scholar
  8. 8.
    F. Close, N. Tornqvist, J. Phys. G: Nucl. Part. Phys. 28, R249 (2002); hep-ph/0204205Google Scholar
  9. 9.
    M. Majewski, Eur. Phys. J. C 30, 223 (2003); hep-ph/0206285CrossRefGoogle Scholar
  10. 10.
    G. Bali et al., Phys. Lett. B 309, 378 (1993), hep-lat/9304012; Phys. Rev. D 62, 054503 (2000)CrossRefGoogle Scholar
  11. 11.
    S.S. Gershtein, A.K. Likhoded, Yu.D. Prokoshkin, Z. Phys. C 24, 305 (1984)CrossRefGoogle Scholar
  12. 12.
    V.V. Anisovich et al., Phys. Lett. B 323, 233 (1994)CrossRefGoogle Scholar
  13. 13.
    C. Amsler et al., Phys. Lett. B 342, 433 (1995)CrossRefADSGoogle Scholar
  14. 14.
    C. Amsler, F.E. Close, Phys. Lett. B 353, 385 (1995), hep-ph/9505219; Phys. Rev. D 53, 295 (1996), hep-ph/9507326CrossRefADSGoogle Scholar
  15. 15.
    F.E. Close, A. Kirk, Phys. Lett. B 483, 3445 (2000), hep-ph/0004241Google Scholar
  16. 16.
    C. Amsler, Phys. Lett. B 541, 22 (2002); hep-ph/0206104CrossRefADSGoogle Scholar
  17. 17.
    F.E. Close, Q. Zhao, Phys. Rev. D 71, 094022 (2005); hep-ph/0504043CrossRefADSGoogle Scholar
  18. 18.
    M. Majewski, W. Tybor, Acta Phys. Polonica B 15, 267 (1984)MathSciNetGoogle Scholar
  19. 19.
    M. Majewski, W. Tybor, Acta Phys. Polonica B 15, 777 (1984); Erratum, Acta Phys. Polonica B 15, 12, page 3 of the coverMathSciNetGoogle Scholar
  20. 20.
    B. Kozlowicz, M. Majewski, Acta Phys. Polonica B 20, 869 (1989)Google Scholar
  21. 21.
    M. Majewski, Z. Phys. C 39, 121 (1988)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G.O. Freund, Y. Nambu, Phys. Rev. Lett 34, 1645 (1975); N. Fuchs, Phys. Rev. D 14, 1912 (1976); D. Robson, Nucl. Phys. B 130, 328 (1977); F.E. Close, A. Kirk, Eur. Phys. J. C 21, 531 (2001), hep-ph/0103173CrossRefADSGoogle Scholar
  23. 23.
    M. Majewski, W. Tybor, Acta Phys. Polonica B 17, 333 (1986); Proc. of the IX Warsaw Symposium on Elementary Particle Physics, Kazimierz, Poland, May 25–31, 1986Google Scholar
  24. 24.
    M. Majewski, The IIIrd Int. Conf. on Hadron Spectroscopy “HADRON’89”, Ajaccio, Corsica (France) September 23–27 1989; “HADRON’91”, College Park, 12–16 August 1991; Proc. of the XV Int. Warsaw Meeting on Elementary Particle Physics, Kazimierz, Poland, 25–29 May 1992Google Scholar
  25. 25.
    M. Majewski, Communication of the Joint Institute of Nuclear Research, E2-91-546, Dubna 1991Google Scholar
  26. 26.
    M. Majewski, Thesis, IHEP Protvino 1995, RussiaGoogle Scholar
  27. 27.
    L. Burakovsky, T. Goldman Phys. Rev. D 57, 2879 (1998), hep-ph/9703271; Nucl. Phys. A 628, 87 (1998), hep-ph /9709305CrossRefADSGoogle Scholar
  28. 28.
    T. Barnes, Invited talk at “Hadron ’03” Aschaffenburg, Germany 2003, hep-ph/0311102Google Scholar
  29. 29.
    M.R. Pennington, “Frascati 1999, Hadron Spectroscopy” Talk given at Workshop on Hadron spectroscopy (WHS 99), Roma, Italy, hep-ph/9905241Google Scholar
  30. 30.
    P. Minkowski, W. Ochs, Nucl. Phys. Proc. Supp. 121, 123 (2003); hep-ph/0209225; W. Ochs, Invited talk at “Hadron ’03”, Aschaffenburg, Germany 2003; hep-ph/0311144CrossRefADSGoogle Scholar
  31. 31.
    V.V. Anisovich, Usp. Fiz. Nauk 47, 49 (2004), hep-ph/0208123CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Theoretical Physics IIUniversity of LodzLodzPoland

Personalised recommendations