Advertisement

Schwinger action principle via linear quantum canonical transformations

  • M. Boudjema-Bouloudenine
  • T. BoudjedaaEmail author
  • A. Makhlouf
Theoretical Physics

Abstract

We have applied the Schwinger action principle to general one-dimensional (1D), time-dependent quadratic systems via linear quantum canonical transformations, which allowed us to simplify the problems to be solved by this method. We show that while using a suitable linear canonical transformation, we can considerably simplify the evaluation of the propagator of the studied system to that for a free particle. The efficiency and exactness of this method is verified in the case of the simple harmonic oscillator. This technique enables us to evaluate easily and immediately the propagator in some particular cases such as the damped harmonic oscillator, the harmonic oscillator with a time-dependent frequency, and the harmonic oscillator with time-dependent mass and frequency, and in this way the propagator of the forced damped harmonic oscillator is easily calculated without any approach.

Keywords

Field Theory Elementary Particle Quantum Field Theory Harmonic Oscillator Action Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Schwinger, Quantum Kinematics and Dynamics (Addison-Wesley, Reading, MA, 1991); Quantum Mechanics (Springer, Berlin Heidelberg New York, 2001)Google Scholar
  2. 2.
    T. Boudjedaa, L. Chetouani, L. Guechi, F. Hammann, Phys. Scr. 52, 9 (1995)ADSGoogle Scholar
  3. 3.
    P. Bracken, Can. J. Phys. 75, 261 (1997)CrossRefADSGoogle Scholar
  4. 4.
    L.F. Urrutia, E. Hernendez, Int. J. Theor. Phys. 23, 1105 (1984)MathSciNetCrossRefGoogle Scholar
  5. 5.
    L.F. Urrutia, C. Monterola, Int. J. Theor. Phys. 25, 75 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    A.B. Nassar, L.C.L. Botelho, J.M.F. Bassalo, P.T.S. Alencar, Phys. Scr. 42, 9 (1990)ADSGoogle Scholar
  7. 7.
    A.B. Nassar, F.L.A. Machado, Phys. Lett. A 123, 9 (1990)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    L. Chetouani, L. Guechi, F. Hammann, Phys. Rev. A 40, 1157 (1989)MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    G. Crespo, A.N. Proto, A. Plastino, D. Otero, Phys. Rev. A 39, 2133 (1989)CrossRefADSGoogle Scholar
  10. 10.
    W. Paul, Rev. Mod. Phys. 62, 531 (1990)CrossRefADSGoogle Scholar
  11. 11.
    H.R. Lewis Jr., W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969); M.A. Markov et al., in: Proceedings of the Lebedev Physics Institute of the Academy of Sciences of the USSR, V (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    I.A. Pedrosa, Phys. Rev. A 55, 3219 (1997); Phys. Rev. A 56, 4300 (1997), and references thereinCrossRefADSGoogle Scholar
  13. 13.
    O. Castanosn, A. Frank, R. Lopez-Pena, J. Phys. A Math. Gen. 23, 5141 (1990)CrossRefADSGoogle Scholar
  14. 14.
    O. Castanosn, R. Lopez-Pena, V.I. Man’ko, J. Phys. A Math. Gen. 27, 1751 (1994)CrossRefADSGoogle Scholar
  15. 15.
    E.D. Davis, G.I. Ghandour, Phys. Lett. A 278, 239 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    A. Anderson, Phys. Lett. B 319, 157 (1993); Ann. Phys. 232, 292 (1994)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    T.J. Park, Bull. Korean Chem. Soc. 25(2), 285 (2004)Google Scholar
  18. 18.
    B.K. Cheng, Int. J. Theor. Phys. 23(12), 1099 (1984)CrossRefGoogle Scholar
  19. 19.
    M.-C. Huang, M.-C. Wu, Chin. J. Phys. 36(4), 566 (1998)Google Scholar
  20. 20.
    R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Boudjema-Bouloudenine
    • 1
  • T. Boudjedaa
    • 2
    Email author
  • A. Makhlouf
    • 3
  1. 1.Département de Physique, Faculté des SciencesUniversité Badji Mokhtar-AnnabaAnnabaAlgeria
  2. 2.Laboratoire de Physique Théorique, Département de Physique, Faculté des SciencesUniversité de JijelOuled AissaAlgeria
  3. 3.Laboratoire de Mathématiques, Informatique et ApplicationsUniversité de Haute AlsaceMulhouseFrance

Personalised recommendations