Advertisement

Strange quark mass from pseudoscalar sum rule with \(O(\alpha_s^4)\) accuracy

  • K.G. Chetyrkin
  • A. KhodjamirianEmail author
Theoretical Physics

Abstract

We include the new, five-loop, O(αs4) correction into the QCD sum rule used for the s-quark mass determination. The pseudoscalar Borel sum rule is taken as a study case. The OPE for the correlation function with N4LO, O(αs4) accuracy in the perturbative part, and with dimension d≤6 operators reveals a good convergence. We observe a significant improvement of stability of the sum rule with respect to the variation of the renormalization scale after including the O(αs4) correction. We obtain the interval m̄s(2 GeV)=105±6±7 MeV, which exhibits about 2 MeV increase of the central value, if the O(αs4) terms are removed.

Keywords

Field Theory Correlation Function Elementary Particle Quantum Field Theory Quark Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    HPQCD Collaboration, C. Aubin et al., Phys. Rev. D 70, 031504 (2004)CrossRefGoogle Scholar
  2. 2.
    ALPHA Collaboration, M. Della Morte et al., Nucl. Phys. B 729, 117 (2005)CrossRefADSGoogle Scholar
  3. 3.
    CP-PACS and JLQCD Collaborations, T. Ishikawa et al, arXiv:hep-lat/0509142Google Scholar
  4. 4.
    QCDSF Collaboration, M. Gockeler et al., arXiv: hep-lat/0509159Google Scholar
  5. 5.
    D. Becirevic et al., arXiv: hep-lat/0510014Google Scholar
  6. 6.
    Q. Mason, H.D. Trottier, R. Horgan, C.T.H. Davies, G.P. Lepage, arXiv: hep-ph/0511160Google Scholar
  7. 7.
    J. Gasser, H. Leutwyler, Phys. Rept. 87, 77 (1982); H. Leutwyler, Nucl. Phys. Proc. Suppl. 94, 108 (2001) [arXiv: hep-ph/0011049]CrossRefADSGoogle Scholar
  8. 8.
    G. Amoros, J. Bijnens, P. Talavera, Nucl. Phys. B 602, 87 (2001)CrossRefADSGoogle Scholar
  9. 9.
    C. Becchi, S. Narison, E. de Rafael, F.J. Yndurain, Z. Phys. C 8, 335 (1981); L. Lellouch, E. de Rafael, J. Taron, Phys. Lett. B 414, 195 (1997)CrossRefGoogle Scholar
  10. 10.
    E. Gamiz, M. Jamin, A. Pich, J. Prades, F. Schwab, Phys. Rev. Lett. 94, 011803 (2005); Nucl. Phys. Proc. Suppl. 144, 59 (2005)CrossRefADSGoogle Scholar
  11. 11.
    P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 95, 012003 (2005)CrossRefADSGoogle Scholar
  12. 12.
    K. Maltman, Nucl. Phys. Proc. Suppl. 144, 65 (2005) [arXiv:hep-ph/0412326]CrossRefADSGoogle Scholar
  13. 13.
    D.S. Gorbunov, A.A. Pivovarov, Phys. Rev. D 71, 013002 (2005)CrossRefADSGoogle Scholar
  14. 14.
    S. Narison, Phys. Lett. B 626, 101 (2005)CrossRefADSGoogle Scholar
  15. 15.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979)CrossRefADSGoogle Scholar
  16. 16.
    K.G. Chetyrkin, N.V. Krasnikov, A.N. Tavkhelidze, Phys. Lett. B 76, 83 (1978)CrossRefADSGoogle Scholar
  17. 17.
    M. Jamin, J.A. Oller, A. Pich, Eur. Phys. J. C 24, 237 (2002)CrossRefADSGoogle Scholar
  18. 18.
    K. Maltman, J. Kambor, Phys. Rev. D 65, 074013 (2002)CrossRefADSGoogle Scholar
  19. 19.
    M. Eidemuller, M. Jamin, F. Schwab, eConf C030614, 005 (2003) [arXiv:hep-ph/0310185]Google Scholar
  20. 20.
    P. Colangelo, A. Khodjamirian, arXiv:hep-ph/0010175.Google Scholar
  21. 21.
    N. Paver, Int. J. Mod. Phys. A 16S1B, 588 (2001)CrossRefADSGoogle Scholar
  22. 22.
    S. Narison, arXiv:hep-ph/0510108Google Scholar
  23. 23.
    P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 96, 012003 (2006)CrossRefADSGoogle Scholar
  24. 24.
    S.G. Gorishnii, A.L. Kataev, S.A. Larin, L.R. Surguladze, Mod. Phys. Lett. A 5, 2703 (1990); Phys. Rev. D 43, 1633 (1991)CrossRefADSGoogle Scholar
  25. 25.
    K.G. Chetyrkin, Phys. Lett. B 390, 309 (1997)CrossRefADSGoogle Scholar
  26. 26.
    K.G. Chetyrkin, D. Pirjol, K. Schilcher, Phys. Lett. B 404, 337 (1997)CrossRefADSGoogle Scholar
  27. 27.
    M. Jamin, M. Munz, Z. Phys. C 66, 633 (1995)CrossRefGoogle Scholar
  28. 28.
    V.P. Spiridonov, K.G. Chetyrkin, Sov. J. Nucl. Phys. 47, 522 (1988)MathSciNetGoogle Scholar
  29. 29.
    K.G. Chetyrkin, C.A. Dominguez, D. Pirjol, K. Schilcher, Phys. Rev. D 51, 5090 (1995)CrossRefADSGoogle Scholar
  30. 30.
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Phys. Lett. B 86, 347 (1979); B.V. Geshkenbein, B.L. Ioffe, Nucl. Phys. B 166, 340 (1980)CrossRefADSGoogle Scholar
  31. 31.
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 191, 301 (1981)CrossRefADSGoogle Scholar
  32. 32.
    E.V. Shuryak, J.J.M. Verbaarschot, Nucl. Phys. B 410, 55 (1993)CrossRefADSGoogle Scholar
  33. 33.
    A.E. Dorokhov, S.V. Esaibegian, N.I. Kochelev, N.G. Stefanis, J. Phys. G 23, 643 (1997); V. Elias, F. Shi, T.G. Steele, J. Phys. G 24, 267 (1998)CrossRefADSGoogle Scholar
  34. 34.
    http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp05/ ttp05-29Google Scholar
  35. 35.
    S. Eidelman et al. [Particle Data Group], Phys. Lett. B 592, 1 (2004)CrossRefADSGoogle Scholar
  36. 36.
    P. Colangelo, F. De Fazio, G. Nardulli, N. Paver, Phys. Lett. B 408,) 340 (1997Google Scholar
  37. 37.
    C.A. Dominguez, L. Pirovano, K. Schilcher, Phys. Lett. B 425, 193 (1998)CrossRefADSGoogle Scholar
  38. 38.
    C. Bruch, A. Khodjamirian, J.H. Kuhn, Eur. Phys. J. C 39, 41 (2005)CrossRefADSGoogle Scholar
  39. 39.
    K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000) [arXiv:hep-ph/0004189]zbMATHCrossRefADSGoogle Scholar
  40. 40.
    B.L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006) [arXiv:hep-ph/0502148]CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Theoretische TeilchenphysikUniversität KarlsruheKarlsruheGermany
  2. 2.Theoretische Physik 1, Fachbereich PhysikUniversität SiegenSiegenGermany

Personalised recommendations