Advertisement

A model of jet quenching in ultrarelativistic heavy ion collisionsand high- p T hadron spectra at RHIC

  • I. P. LokhtinEmail author
  • A. M. Snigirev
Theoretical Physics

Abstract.

The method to simulate the rescattering and energy loss of hard partons in ultrarelativistic heavy ion collisions has been developed. The model is a fast Monte Carlo tool introduced to modify a standard PYTHIA jet event. The full heavy ion event is obtained as a superposition of a soft hydro-type state and hard multi-jets. The model is applied to the analysis of the jet quenching pattern at RHIC.

Keywords

Field Theory Elementary Particle Quantum Field Theory Energy Loss Particle Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Baier, D. Schiff, B.G. Zakharov, Annual Rev. Nucl. Part. Sci. 50, 37 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Proceedings of 16th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions Quark Matter 2002 (Nantes, France, 18-24 June, 2002), Nucl. Phys. A 715, (2003); Proceedings of 17th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions Quark Matter 2004 (Oakland, California, 11-17 January, 2004), J. Phys. G 30, (2004)Google Scholar
  3. 3.
    X.-N. Wang, Phys. Lett. B 579, 299 (2004)ADSGoogle Scholar
  4. 4.
    A. Accardi et al. , Jet physics, in Hard probes in heavy ion collisions at the LHC, edited by M. Mangano, H. Satz, U. Wiedemann, CERN Report 2004-09, hep-ph/0310274Google Scholar
  5. 5.
    CERN Workshop on Monte Carlo tools for the LHC, 2003, http:/mlm.home.cern.chmlmmcwshop03mcwshop.htmlGoogle Scholar
  6. 6.
    I.P. Lokhtin, A.M. Snigirev, Phys. Lett. B 440, 163 (1998)ADSGoogle Scholar
  7. 7.
    I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 16, 527 (2000)ADSGoogle Scholar
  8. 8.
    I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 21, 155 (2001)ADSGoogle Scholar
  9. 9.
    I.P. Lokhtin, S.V. Petrushanko, L.I. Sarycheva, A.M. Snigirev, Phys. At. Nucl. 65, 943 (2002)Google Scholar
  10. 10.
    I.P. Lokhtin, A.M. Snigirev, Phys. Lett. B 567, 39 (2003)ADSGoogle Scholar
  11. 11.
    J.D. Bjorken, Fermilab publication Pub-82/29-THY (1982)Google Scholar
  12. 12.
    S. Mrówczyński, Phys. Lett. B 269, 383 (1991); M.H. Thoma, Phys. Lett. B 273, 128 (1991)ADSGoogle Scholar
  13. 13.
    R. Baier, Yu.L. Dokshitzer, A.H. Mueller, D. Schiff, Phys. Rev. C 60, 064902 (1999); C 64, 057902 (2001)CrossRefADSGoogle Scholar
  14. 14.
    X.-N. Wang, X.-F. Guo, Nucl. Phys. A 696, 788 (2001)ADSGoogle Scholar
  15. 15.
    I. Vitev, hep-ph/0503221Google Scholar
  16. 16.
    E. Wang, X.-N. Wang, Phys. Rev. Lett. 87, 142301 (2001)ADSGoogle Scholar
  17. 17.
    Yu.L. Dokshitzer, D. Kharzeev, Phys. Lett. B 519, 199 (2001)ADSGoogle Scholar
  18. 18.
    M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733, 265 (2004)ADSGoogle Scholar
  19. 19.
    N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. D 69, 114003 (2004)CrossRefADSGoogle Scholar
  20. 20.
    B.-W. Zhang, E. Wang, X.-N. Wang, Phys. Rev. Lett. 93, 072301 (2004)ADSGoogle Scholar
  21. 21.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983)CrossRefADSGoogle Scholar
  22. 22.
    B.G. Zakharov, JETP Lett. 70, 176 (1999)ADSGoogle Scholar
  23. 23.
    U.A. Wiedemann, M. Gyulassy, Nucl. Phys. B 560, 345 (1999); U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000); A 690, 731 (2001)CrossRefADSGoogle Scholar
  24. 24.
    M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 571, 197 (2000); Phys. Rev. Lett. 85, 5335 (2000); Nucl. Phys. B 594, 371 (2001)CrossRefADSGoogle Scholar
  25. 25.
    http:/cern.chlokhtinpyquenGoogle Scholar
  26. 26.
    T. Sjostrand, Comp. Phys. Com. 135, 238 (2001)ADSGoogle Scholar
  27. 27.
    N.A. Kruglov, I.P. Lokhtin, L.I. Sarycheva, A.M. Snigirev, Z. Phys. C 76, 99 (1997)CrossRefGoogle Scholar
  28. 28.
    I.P. Lokhtin, L.I. Sarycheva, A.M. Snigirev, Phys. Lett. B 537, 261 (2002)ADSGoogle Scholar
  29. 29.
    E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993)CrossRefADSGoogle Scholar
  30. 30.
    S. Muroya, H. Nakamura, M. Namiki, Progr. Theor. Phys. Suppl. 120, 209 (1995)ADSGoogle Scholar
  31. 31.
    P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000); P.F. Kolb et al. , Phys. Lett. B 500, 232 (2001); Nucl. Phys. A 696, 175 (2001)CrossRefADSGoogle Scholar
  32. 32.
    HYDJET fast event generator, http:/cern.chlokhtinhydrohydjet.htmlGoogle Scholar
  33. 33.
    T. Hirano, T. Nara, Nucl. Phys. A 743, 305 (2004); Phys. Rev. C 69, 034908 (2004); C 66, 041901 (2002)ADSGoogle Scholar
  34. 34.
    B.B. Back et al. (PHOBOS Collab.), Phys. Rev. Lett. 91, 052303 (2003)ADSGoogle Scholar
  35. 35.
    S.S. Adler et al. (PHENIX Collab.), Phys. Rev. Lett. 91, 072301 (2003)ADSGoogle Scholar
  36. 36.
    C. Adler et al. (STAR Collaboration), Phys. Rev. Lett. 89, 202301 (2002)Google Scholar
  37. 37.
    M. Plumer, M. Gyulassy, X.-N. Wang, Nucl. Phys. A 590, 511 (1995)ADSGoogle Scholar
  38. 38.
    S.S. Adler et al. (PHENIX Collab.), Phys. Rev. Lett. 91, 182301 (2003); nucl-ex/0411040ADSGoogle Scholar
  39. 39.
    J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 93, 252301 (2004); nucl-ex/0409033Google Scholar
  40. 40.
    S.S. Adler et al. (PHENIX Collab.), Phys. Rev. C 69, 034909 (2004)ADSGoogle Scholar
  41. 41.
    J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 92, 112301 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2006

Authors and Affiliations

  1. 1.M.V. Lomonosov Moscow State UniversityD.V. Skobeltsyn Institute of Nuclear PhysicsMoscowRussia

Personalised recommendations